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Abstract

This thesis describes research work within the theme of trend mining as applied to social

network data. Trend mining is a type of temporal data mining that provides observation

into how information changes over time. In the context of the work described in this

thesis the focus is on how information contained in social networks changes with time.

The work described proposes a number of data mining based techniques directed at

mechanisms to not only detect change, but also support the analysis of change, with

respect to social network data. To this end a trend mining framework is proposed

to act as a vehicle for evaluating the ideas presented in this thesis. The framework

is called the Predictive Trend Mining Framework (PTMF). It is designed to support

“end-to-end” social network trend mining and analysis. The work described in this

thesis is divided into two elements: Frequent Pattern Trend Analysis (FPTA) and

Prediction Modeling (PM). For evaluation purposes three social network datasets have

been considered: Great Britain Cattle Movement, Deeside Insurance and Malaysian

Armed Forces Logistic Cargo. The evaluation indicates that a sound mechanism for

identifying and analysing trends, and for using this trend knowledge for prediction

purposes, has been established.
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Chapter 1

Introduction

Data Mining (DM) is a generic term used to describe processes used to achieve the

automated analysis (by computer) of data with the aim of discovering hidden knowledge

[57]. DM is an element in the Knowledge Discovery in Data (KDD) process. KDD

encompasses a set of techniques that include, for example, data warehousing, data

pre-processing and post-processing; as well as DM. DM has many applications such as:

1. Bank and financial industry data analysis, where it is used to minimize fraud

and identify high risk or bad customers [4, 19], and to attempt to forecast stock

market movement [119].

2. Medical research, where it is used to monitor (for example) the growth of cancer

cell patterns in patients [34].

3. Retail industry support, where it is used to develop marketing and stock replen-

ishment strategies based on customer behaviour and purchasing patterns [14].

4. Telecommunication and computer network analysis, where it is used to identify

the loyalty of (say) mobile subscribers in terms of churn rate [46, 100], and to

detect network intrusions or irregular behaviour with respect to network users

[16, 36].

DM encompasses a variety of techniques such as classification, clustering and pat-

tern discovery. The work described in this thesis is predominantly directed at the latter.

In pattern discovery the patterns of interest may take many forms, such as frequently

occurring word groups that may exist across a document collection or frequently oc-

curring sub-graphs in graph data. More commonly the frequent patterns of interest are

simply frequently occurring sub-sets of attribute values that occur together in tabular

datasets. The extraction of frequent patterns from data is typically computationally

expensive because, given any reasonably sized dataset, there tends to be a large number

of potential frequent patterns. Given n binary valued attributes there are potentially

n2 − 1 frequent patterns (minus one to exclude the null pattern).
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The amount of data available for the application of data mining has increased

rapidly over recent years. Reasons for this include the availability of inexpensive storage

and increases in the capabilities of computer hardware. In parallel to the increase in the

amount of data collected there has been a corresponding increase in the desire to apply

data mining techniques to this data. There is also an increasing interest in studying

the spatiality and temporality of the data as this may provide further interesting and

useful insights. One element of the latter is trend mining, where we wish to identify

how patterns change with time (or do not change).

In the work described in this thesis a trend is conceptualized as a time series com-

prising a sequence of “occurrence” values plotted against time. More specifically the

author is interested in identifying temporal trends in networks such as social and distri-

bution networks. Social networks represent the interaction among individuals in some

social setting; the nodes in the network typically represent the individuals and the links

the interactions. In distribution networks the nodes describe locations (which might be

individuals) and the links the “traffic” between locations. Networks, although typically

conceived of in terms of graphs, can also be represented in a tabular format such that

each record represents a time stamped “interaction” between two nodes. As such tab-

ular pattern mining techniques can be used to identify patterns in a tabulated “snap

shot” of a network. If we then take a sequence of snap shots we can mine trends in the

data by identifying changes in the patterns over time. Given that, as noted above, fre-

quent pattern mining typically results in a large number of patterns a significant issue

in such trend analysis is the large number of frequent patterns and trends that may

be discovered. To address this issue this thesis describes an overall frequent pattern

trend mining and analysis mechanism. The proposed framework is designed to identify

frequent pattern trends and also provide mechanisms to group and analyse large num-

ber of frequent pattern trends. The proposed trend analysis is directed at detecting

changes in a sequence of identified frequent pattern trends. This thesis also considers

additional analytical techniques, including visualisation and prediction techniques. The

visualisation technique provides assistance for users to interpret trend analysis results.

Finally the prediction technique uses knowledge of trends to support the investigation

of the movement of patterns within social networks.

The rest of this introductory chapter is organized as follows. In Section 1.1 the

motivation for the research is discussed. Section 1.2 presents the research question and

associated issues. In Section 1.3 the programme of work is outlined. Then Section 1.4

discusses the criteria used to evaluate the research outcomes (the “criteria for success”)

followed in Section 1.5 with detail of the “contribution” of the research. Section 1.6,

then presents an outline of the structure of the remainder of the thesis, followed in

Section 1.7 with details of published work produced as a result of the described research.

Finally, in Section 1.8 the chapter is concluded with a brief summary.
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1.1 Research Motivation

Trends provide useful information for decision and policy makers. For example knowl-

edge of seasonal trends in customer buying patterns, trends describing change in the

behaviour of social networking site users, and trends on how some disease or condition

might spread in a given geographical area, are all potentially useful to decision makers.

The discovery of interesting trends helps us to detect dynamic changes in data that can

lead to actions being taken and/or policy or regulation amendments.

The motivation for the research described in this thesis can thus be broadly iden-

tified as the desire to realise the advantages that frequent pattern trend mining can

offer to support decision makers. More specifically, in this thesis a number of spe-

cific applications are considered in detail: (i) The cattle movement tracking system in

operation in Great Britain (GB), (ii) an online insurance quote system operated by

Deeside Insurance Ltd and (iii) the logistics network operated by the Malaysian Armed

Forces. It is suggested that analysis of the GB cattle movement network provides trend

knowledge useful for policy and decision makers who wish to monitor and address is-

sues such the spread of cattle disease. Similarly the analysis of the Deeside Insurance

dataset provides useful knowledge with respect to customer behaviour to support mar-

keting initiatives. Trend interpretation within the Malaysian Armed Forces Logistic

Cargo network provides for logistic item stock management and distribution pattern

monitoring over time. Further details of these datasets are presented later in this thesis.

1.2 Research Issues and Question

Given the above the key aim of the work described in this thesis is to research and

investigate effective mechanisms to: (i) discover temporal frequent patterns and trends

in network data, and (ii) facilitate the analysis of these trends and patterns to predict

behaviour across networks. Realisation of this aim requires the solution of a number of

research issues:

1. Frequent Patterns and Trends: How can we represent frequent patterns and

trends so as to facilitate the desired trend mining? How do we transform the raw

datasets to support the mining process? Given a large quantity of temporal data,

how do we handle the granularity of the time stamps? How do we represent and

highlight the trends as a time series result?

2. Change Detection: How can we detect changes in the identified trends? How

do we define the types of changes that we are interested in? How do we measure

the degree of these changes?

3. Interesting Trends: Some identified patterns and trends may not be useful

to users and stakeholders. Thus how do we handle a large number of generated
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patterns and trends? How do we measure the interestingness of these patterns and

trends? Can we apply constraints to the data to anticipate interesting, desirable

and useful patterns and trends?

4. Interpretation of Patterns and Trends: How do we interpret types of fre-

quent pattern trends to the users? How do we annotate the changes occurred in

frequent pattern trends in the mining and analysis process?

5. Prediction: How can we predict the “percolation” of information within a net-

work? Can we use the discovered patterns and trends to predict the probability

of any activity or event in the network? If prediction is possible, what methods

are best to manipulate the patterns and trends?

6. Visualization: How can we visualize the findings to enhance user understand-

ing? What are the suitable interfaces/features for projecting the results? What

methods are best suited to illustrating the temporality of patterns, and trend

changes and predictions? If spatial patterns are involved, how can we best relate

these patterns to the actual geographical locations?

The overriding research question is thus: “What are the most appropriate mecha-

nism for identifying, analyzing and displaying trends in network data; and how might

those trends usefully be employed for prediction purposes?” The following section pro-

vides a description of the broad research methodology adopted to address this research

question.

1.3 Research Methodology

To act as a focus for the work a social network extracted from the GB cattle movement

database was used. This was selected because: (i) this provided a substantial network,

(ii) it featured time stamps and (iii) analysis of the network would provide an exemplar

of the kind of application where the results of the research could be usefully employed.

As the research progressed two additional datasets were considered: Deeside Insurance

and Malaysian Armed Forces Logistic Cargo. The following programme of work was

adopted:

Representation: Investigation of: (i) mechanisms whereby network data could be

represented as tabular data, and (ii) mechanisms for conducting the necessary

preprocessing with respect to the target datasets.

Frequent Pattern Trend Mining: Investigation into mechanisms to identify the de-

sired trends. The intention here was to build a frequent pattern trend mining

system that could be analysed and evaluated, and which could then be used as

the foundation for work conducted in latter stages within the programme of work.
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Trend Clustering: The identification of some mechanism whereby the anticipated

large number of identified trends could be grouped so as to facilitate understand-

ing. The intention here was to use some form of SOM to achieve the desired

clustering.

Change Detection: The investigation of techniques whereby changes in trends (or

the absence of changes) could be identified. The fundamental idea here was to

research mechanisms whereby a sequence of self organizing maps could be related

and thus trend movements from one cluster to another identified.

Visualisation: Having identified changes in pattern trends it was felt to be desirable

to have some mechanism for displaying this to end users. An investigation into

a strategy whereby pattern changes could be visualized was therefore deemed

desirable.

Prediction: Given knowledge of the pattern trends that exist within a network data

collection the final phase in the programme of work was concerned with an in-

vestigation of how this knowledge might be used to predict the progress of some

event across the network.

It was deemed desirable to incorporate the above elements into some forms of inte-

grated framework, a particular artifact resulting from the proposed programme of work

is therefore the Predictive Trend Mining Framework (PTMF). Figure 1.1 illustrates the

conceptual model of the PTMF which consists of two parts: (i) Frequent Pattern Trend

Analysis and (ii) Prediction Modeling. The Frequent Pattern Trend Analysis part has

four modules to identify and analyse the frequent patterns and trends that may be con-

tained within a network dataset. The Prediction Modeling part comprises two modules

to determine and predict the probability of future activities in a social network.

1.4 Evaluation Criteria

This section discusses the evaluation criteria used to measure the quality of the research

undertaken in the context of the above programme of work. The aim was to develop

criteria that could be usefully employed to determine the effectiveness of techniques

proposed to address the various identified research issues. The following requirements

were therefore considered:

1. Genericity. Any proposed technique was required to be generic so that it would

have general applicability, thus allowing for the analysis of different forms of social

network data, from www usage data to business community data. Genericity was

demonstrated by applying proposed techniques to a variety of social network data

collections.
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Percolation Matrix

Calculating probability of 

information movement 

between network nodes.

1 2 3 4 5 6

1 0.00 0.00 0.00 0.01 0.00 0.00

2 0.00 0.00 0.00 0.01 0.00 0.00

3 0.00 0.01 0.00 0.00 0.00 0.00

4 0.00 0.00 0.01 0.01 0.00 0.00

5 0.00 0.00 0.00 0.04 0.00 0.00

6 0.00 0.00 0.00 0.01 0.03 0.00

Prediction Modeling Visualisation

Visualisation of  Prediction 

Modeling in Social Network

Data input, describing 

collection of n time 

stamped networks

Prediction Modeling

Frequent Pattern 
Trend Analysis

Figure 1.1: The Conceptual Model of the Proposed Predictive Trend Mining Framework

2. Computational time and memory. Most frequent pattern mining algorithms

are computationally expensive. As the size of the dataset increases, the computa-

tional and memory resource required increases significantly. Any potential trend

mining and analysis technique should therefore be able to process large num-

bers of records in reasonable time. Run time and memory usage measurements

were therefore used as a mechanism for determining the effectiveness of proposed

techniques.

3. Flexibility and Reusability. Regardless of their specific nature trend mining

and analysis mechanisms should be able to adapt to accommodate different types

of datasets. For example any proposed algorithm should be able to accommodate

further features. It also should be able to accept data attribute selections and

data constraints to reflect individual user interests. Users should also be able to

conduct the desired trend mining with different levels of granularity; for example

weekly, monthly and yearly. Flexibility and reusability was tested using different

scenarios (some incorporating constraints) and different granularities.
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4. Scalability. Any proposed technique, to be considered genuinely useful, should

be scalable, i.e. it should be able to operate with large datasets. Thus datasets

featuring substantial numbers of records and/or attributes were used to evaluate

the proposed techniques.

5. Accuracy. Clearly the proposed technique should also discover the correct pat-

terns and trends. This was established, using the cattle movement database,

through consultation with domain experts.

As already noted, for evaluation purposes several real world and diverse network

datasets were used: (i) GB cattle movement, (ii) Deeside Insurance quotes and (iii)

Malaysian Armed Forces logistic cargo distribution.

1.5 Research Contributions

The main contributions of the research work considered in this thesis can be summarized

as follows:

1. A mechanism for efficiently generating temporal spatial frequent patterns and

trends, that may exist within networks, in terms of episodes or epochs (this will

be explained in further detail later in this thesis).

2. A mechanism for clustering groups of trends, using a SOM technique, so as to

assist in the further analysis of the identified trends.

3. A trend cluster analysis mechanism to support the detection of changes in trends

and frequent pattern migrations.

4. A visualization of pattern movement (traffic) from one trend cluster to another

over a period of time, again to facilitate and support trend analysis.

5. A prediction modeling and visualisation technique that can be applied to network

data, which illustrates the manner in which information (events) might travel

across a (social) network.

1.6 Structure of Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents a literature review of the related research on data mining and

KDD, frequent pattern and temporal mining, social network and trend analysis,

prediction and lastly visualisation methods.
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Chapter 3 presents a brief description of the selected network datasets. As already

noted three network datasets were used for the experiments: (i) the GB cattle

movement data, (ii) Deeside Insurance quotation data and (iii) Malaysian Armed

Forces (MAF) logistic cargo distribution data. The GB cattle movement data has

been used as the main dataset for the experiments, the latter two were used to

confirm the genericity and flexibility and reusability of the proposed algorithms.

Chapter 4 presents the proposed modules for the Frequent Pattern Trend Analysis

which is the first part of the PTMF. This includes mechanisms to generate fre-

quent patterns and trends, cluster similar groups of trends and detect changes

in frequent patterns and trends over a period of time. This part of the frame-

work consists of four modules (Figure 1.1), (i) the Trend Identification module

to mine frequent patterns and trends using the Trend Mining-Total From Partial

algorithm, (ii) the Trend Grouping module to group large numbers of discovered

trends to ease the process of trend analysis, (iii) the Pattern Migration Cluster-

ing module to analyse the temporal pattern movement from one trend cluster to

another and to identify communities of clusters of pattern migrations, and (iv)

the Pattern Migration Visualisation module designed to provide a mechanism for

illustrating trend changes and pattern migrations to end users.

Chapter 5 presents an evaluation of the proposed modules for the Frequent Pattern

Trend Analysis which were introduced in Chapter 4, from pattern and trend iden-

tification to the visualisation of pattern migrations. The evaluation was conducted

with respect to the criteria identified in Sub-section 1.4 above.

Chapter 6 introduces the Prediction Modeling technique. The technique comprises

several elements to predict the “percolation” of information and events in a net-

work given specific frequent patterns. The framework also includes a visualization

tool to provide an animation of the percolation. In this case the experiments were

performed using the frequent patterns generated using the GB cattle movement

data only. A series of experiments were undertaken to demonstrate how the

percolation of information and events in a social network can be predicted. A

mechanism to support the “drilling down” into trend data is also considered.

Chapter 7 concludes the thesis and presents a summary of the work presented and

the main findings in terms of the identified research question and issues. The

chapter also includes a discussion on possible directions for a future work.

1.7 Published Work

Some of the work described in this thesis has been the subject of number of refereed

publications. These are itemized below.
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1. Journal Papers

(a) Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C., Patel, Y. and

Williams, S. Finding “Interesting” Trends in Social Networks Using Fre-

quent Pattern Mining and Self Organizing Maps. Knowledge Based System

Journal 2011. Journal article comprising an extended, updated and revised

version of (f).

(b) Nohuddin, P.N.E., Sunayama, W., Coenen, F., Christley, R. and Setzkorn,

C. Trend Mining in Social Networks: From Trend Identification to Visu-

alisation. Will be submitted to Expert Systems: the Journal of Knowledge

Engineering 2012. This is an extended version of (g) that includes details of

the pattern migrations mechanism.

2. Conference Papers

(c) Nohuddin, P.N.E., Coenen, F., Christley, R. and Setzkorn, C. Trend Min-

ing in Social Networks: A Study Using A Large Cattle Movement Database.

ICDM, Springer-Verlag Berlin, Heidelberg (2010). Conference paper report-

ing on some initial work on trend mining that proposed a trend mining mech-

anism, founded on frequent pattern mining (the TFP-TM algorithm) and

clustering, to identify temporal spatial trends in social networks. The work

was illustrated using the GB cattle movement database.

(d) Nohuddin, P.N.E., Coenen, F., Christley, R. and Setzkorn, C. Detecting

Temporal Pattern and Cluster Changes in Social Networks: a study focusing

GB Cattle Movement Database. IFIP Advances in Information and Commu-

nication Technology, 2010, Volume 340/2010, 163-172 (2010). This paper

built on work described in (a) and included additional work to detect cluster

changes in social networks. The GB cattle movement database was again

used in the evaluation section. Trend analysis was done using a distance

function to highlight temporal cluster change.

(e) Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C., Patel, Y. and

William, S. Frequent Pattern Trend Analysis in Social Networks. ADMA’10

Proceedings of the 6th International Conference on Advanced data mining

and applications: Part I, Springer-Verlag Berlin, Heidelberg (2010). The pa-

per described an extension of work described in (d) whereby some constraints

were applied to the mining process so as to enhance the trend analysis results.

The evaluation section reported on experiments using the Deeside insurance

quotation database as well as the GB cattle movement database used previ-

ously.
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(f) Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C., Patel, Y. and

Williams, S. Social Network Trend Analysis Using Frequent Pattern Mining

and Self Organizing Maps. AI-2010: SGAI International Conference. pp

311-324 (2010). The paper reported on a technique for identifying, grouping

and analyzing trends in social networks using a cluster analysis strategy to

identify “interesting” trends. The study focused on two types of network, star

networks and complex star networks, exemplified by two real applications: the

GB cattle movement database and the Deeside insurance quotation databases.

(g) Nohuddin, P.N.E., Sunayama, W., Coenen, F., Christley, R. and Setzkorn,

C. Trend Mining and Visualisation in Social Networks. AI 2011: SGAI Inter-

national Conference on Artificial Intelligence. Conference paper describing

an updated trend mining framework to that published previously, the IGCV

(Identification, Grouping, Clustering and Visualisation) framework that in-

troduced the proposed visualisation mechanism. Evaluation of its operation

was reported using the GB cattle movement network. This paper won the

prize for the Best Student Paper award.

(h) Nohuddin, P.N.E., Coenen, F., Christley, R. and Sunayama, W. Identifica-

tion and Visualisation of Pattern Migrations in Big Network Data. PRICAI

2012: The Pacific Rim International Conference on Artificial Intelligence

(PRICAI). The conference paper described the Pattern Migration Identifi-

cation and Visualisation (PMIV) framework which was designed to operate

using trend clusters, extracted from large network data using a Self Organ-

ising Map technique. The PMIV framework was also used to facilitate the

detection of changes in the characteristics of trends over time, and “com-

munities” of trend clusters. Evaluation of its operation was reported using

the GB cattle movement network, Deeside Insurance and Malaysian Armed

Forces Logistic Cargo networks.

1.8 Summary

In summary, this chapter has provided an overview and background for the research

described in the reminder of this thesis, including details concerning the motivation for

the work and the research question and issues. It has also provided a brief description

of the programme of work, the research evaluation criteria and the contribution of the

work. In the following chapter a literature review, intended to provide much more detail

regarding the background concerning the research described in this thesis, is presented.
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Chapter 2

Literature Review

As noted in Chapter 1, the research described in this thesis seeks to establish an effective

mechanism to identify and group trends found in social network data, and also to

facilitate the analysis of these trends with respect to network activity. In addition,

the research is directed towards the presentation of the analysis using some form of

visualisation. This chapter reviews the relevant previous work on which the proposed

framework to realise the desired thesis aims is founded.

This chapter is organized into eight sub-topics as follows: (i) Knowledge Discovery

in Databases (KDD) and Data Mining, (ii) Association Rules and Frequent Pattern

Mining, (iii) Temporal and Spatial Data Mining, (iv) Trend Mining, (v) Clustering

Techniques, (vi) Social Network Analysis and Mining, (vii) Prediction Modeling and

(viii) Visualization. Each sub-topic is considered in a separate Section. Section 2.1

elaborates on the concept and process of KDD and distinguishes between KDD and

Data Mining. Section 2.2 describes the concept of Association Rules and Frequent

Pattern Mining (FPM) and reviews several established FPM algorithms. Sections 2.3

and 2.4 focus on mining techniques using temporal spatial data and trend mining;

Section 2.4 also considers trend analysis. Section 2.5 describes the concept of Clustering,

especially in the context of using Self Organising Maps as a clustering technique, and

reviews some related work on cluster analysis. Section 2.6 discusses the concept of social

networks, and techniques in social network analysis and mining. Section 2.7 evaluates

the concept of prediction modeling in social networks and also considers techniques

which have been introduced to predict events or movement of information (and other

activities) in a network. Section 2.8 then describes related work on visualization in

data mining. Finally Section 2.9 presents a summary of this chapter.

2.1 Knowledge Discovery in Databases and Data Mining

Using current ICT the amount of stored data has accumulated rapidly. Given this

amount of data the assumption is that there is valuable hidden knowledge within this

data. The suggestion is that discovery of this knowledge may be useful to decision
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makers and stakeholders. For example, historical customer bank transaction data may

be used to rank and assess customers. Banks have employed such procedures for many

years as a means of deciding whether or not to approve loans and credit cards. Com-

panies and institutions of all kinds have used similar methods to identify their most

valuable customers.

A variety of tools and methods have been proposed to store data to support business

applications [38, 55, 109]. Many database and data administrators use Structured

Query Language (SQL) and similar tools to maintain and manipulate stored data.

However, such database tools are not able to discover non-trivial hidden information

or knowledge in data, such as relationships and/or causal data attribute patterns.

The identification of such knowledge requires alternative tools; this is the domain of

Knowledge Discover in Data (KDD).

In the research described in this thesis the author focuses on KDD techniques,

specifically data mining tools, directed at data that has been extracted from social

network information. The assumption is that the mining process is done using historical

data which has been transferred from some operational database to a data warehouse.

In this section the concept of KDD is discussed further in Sub-section 2.1.1 and the

KDD process in Sub-section 2.1.2. Data mining, a central element within then KDD

process, is then reviewed in Sub-section 2.1.3.

2.1.1 The Concept of Knowledge Discovery in Databases

The terms Knowledge Discovery in Databases (KDD) and Data Mining (DM) have

been used interchangeably to describe the process of extracting useful and meaningful

information from data. However in this thesis, and in line with many other authors,

KDD is defined as the whole process of discovering useful information and knowledge

within data, whereas DM is defined as the task within the KDD process where tools

and mechanism are applied to identify (mine) the knowledge of interest [38, 41, 42].

The application of KDD is widespread and includes revenue generation, medical and

diseases monitoring and the provision of support for “homeland security”. To give

three specific examples: [71] describes a health case management system to identify

and predict the possible causes whereby a patient may be considered to be a “high

risk” patient; [67] describe a KDD system, to support a social program for children,

founded on the application of KDD to street crime data in Ethiopia; and [132] apply

KDD to a Taiwanese airline passenger database to identify “valued customers”.

KDD incorporates a number of processes, from the preparation of raw data prior

to the application of DM to visualization of the final result. The following sub-section

describes these processes.
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2.1.2 The KDD Process

As noted above, the KDD process encompasses a number of stages. It is generally

acknowledged [28, 38, 129] that most KDD applications can be divided into five stages

as follows:

1. Problem understanding: During this first stage the scope and boundaries of

the KDD problem to be addressed are defined. Discussion with end users and

decision makers is typically undertaken so as to establish the objectives of the

desired KDD. Data is usually collected from various data sources and combined

into a single data repository (data warehouse).

2. Pre-processing: The collected data typically includes anomalies that need to

be corrected or removed to avoid inaccurate results. The pre-processing stage

includes the filtering of data records to remove null values, noise reduction and

sometimes the anonimisation of sensitive data.

3. Transformation: Some of the collected data may have different formats from

one another, thus in stage three (where necessary) all data is converted to a

standard format.

4. Data Mining: In stage four the actual knowledge discovery takes places using

some appropriate data mining technique (the data mining stage is considered in

further detail in the following sub-section).

5. Evaluation: The final stage of the KDD process comprises the analysis of the

data mining results (this might include the use of visualisation techniques).

2.1.3 Data Mining

From the above DM can be claimed to be the central activity within the overall KDD

process. DM encompasses the use of tools and techniques to discover knowledge in data.

DM can result in the identification of patterns, associations and relationships of many

forms. Typical DM activities include Association Rule Mining (ARM), Classification,

Clustering, Sequencing and Forecasting [38, 50, 130]. Each is considered in some further

detail below:

1. Association Rule Mining (ARM): ARM is concerned with the discovery of

relationships between data attributes. The frequently cited exemplar application

for ARM is supermarket basket analysis (customers who buy eggs are also likely

to buy bread).

2. Classification: Classification is concerned with decision making, the allocation

of a current situation to a category (class). A frequently cited exemplar appli-

cation is the situation where somebody wishes to decide whether to go out and
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play golf or not given the current weather conditions (the classes in this case are

“play” and “don’t play”). The classifiers used are generated using what are called

supervised learning methods in that they require pre-labeled training data.

3. Clustering: Clustering is directed at the process of partitioning data records into

groups (clusters) that share similar characteristics. In this case the data groups

are not known before hand. Clustering techniques are therefore referred to as

unsupervised learning methods. It is interesting to note that once a set of clusters

have been derived the definition of the clusters can be used for classification

purposes.

4. Sequence Mining: Sequence mining refers to the process of determining the

relationships between data attributes according to some ordering (normally a

temporal ordering). The mining process is usually performed using time stamped

data.

5. Forecasting: Forecasting is akin to classification however, it incorporates a tem-

poral element. Generally, sequence data is used and some mechanism applied to

predicts future events.

The work described in this thesis incorporates elements of ARM, Clustering, Se-

quence Mining and Forecasting; of which ARM (or Frequent Pattern Mining) is the

most central. The following section therefore considers ARM in more detail.

2.2 Association Rules and Frequent Pattern Mining

This section describes the ideas behind Association Rules (ARs) and the more general

issues associated with Frequent Pattern Mining (FPM). In this thesis FPM is considered

to be distinct from ARM, although ARM incorporates FPM. This section is divided into

three sub-sections. The first, Section 2.2.1, considers the process of ARM. The second,

Section 2.2.2, considers frequent pattern mining and concentrates on the “classic” and

most popular FPM algorithms. The work in this thesis is in part an extension of the

Total From Partial (TFP) FPM algorithm, and thus the third sub-section considers

this algorithm in some detail. For completeness this section is concluded with a review

of some more unusual approaches to FPM in Sub-section 2.2.3 and some discussions

on applications and concerns of FPM in Sub-section 2.2.4.

2.2.1 Association Rules

ARM is an unsupervised data mining method. As noted above, the main concept of

ARM is to discover relations between data attributes that occur frequently together

within a dataset [38, 50]. The most well known ARM algorithm is the Apriori algorithm
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of Agrawal et al. [6] which was originally applied to market-basket analysis. The aim

was to provide marketing managers with information that correlated certain product

purchases so that this information could be used with respect to advertising, store

layout, and so on. The ARM problem can be formally defined as follows:

• I is a set of j distinct items (attributes), I = {i1, i2, i3, i4, . . . , ij}.

• T is a transaction comprising some subset of I (T ⊆ I).

• D is a transaction dataset comprising n transactions, T = {T1, T2, T3, T4, . . . , Tn}.

An association rule (AR) is then a relationship A ⇒ B, where {A,B} are subsets

of I and A ∩ B = ∅. This should be read as every time a transaction T contains A

it will probably also contains B. The set A is referred to as the antecedent and B as

the consequent of the rule. Note that ARs can not always be reversed, A ⇒ B does

not necessarily imply B ⇒ A. The support (frequency) and confidence (accuracy) of a

rule, are used as measures of the potential effectiveness of a rule. The support (supp)

of an AR is defined as the percentage of records that hold A ∪ B with respect to the

total number of records in the input data. An AR is said to be frequent or supported if

its support exceeds some user supplied minimum support threshold σ. The confidence

(conf) of an AR is defined as the ratio of the support for A ∪B to the support for A:

conf(A⇒ B) = supp(A∪B)
supp(A)

If the confidence value for an AR is 1 we have a very good AR. An AR is considered

to be “interesting” (valid) if its confidence value exceeds some user supplied confidence

value τ . ARs are thus typically generated by first identifying frequent itemsets and

then using the criteria of support and confidence to discover significant relationships.

Although the above discussion concentrates on the support-confidence ARM framework

it should be noted that this has its critics and that alternative ARM frameworks have

been proposed [99, 102]. However, the support-confidence ARM framework remains

the most popular.

Given the above, ARM can be typically thought of as a two stage processes: (i) FPM

and (ii) AR generation [44]. The first is the most computationally expensive because,

given any reasonably sized dataset, there tends to be a large number of potential

frequent patterns. Thus much research work on ARM has been directed at efficient

and effective techniques to achieve FPM. The domain of FPM is of particular interest

with respect to the work described in this thesis, FPM is therefore discussed in further

detail in the following sub-section.

2.2.2 Frequent Pattern Mining

As noted above FPM plays an essential role in ARM. On its own FPM is concerned

with finding frequent patterns (frequently co-occurring sub-sets of attributes) in data.
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A variety of FPM algorithms have been proposed. With respect to tabular data the

majority of these have been integrated with ARM algorithms. Of these the best known,

and most frequently cited, is the Apriori algorithm [6]. There a great many variations of

Apriori, two variations of note are AprioriTid and AprioriHybrid. Another well known

FPM algorithm is FP-growth which is founded on a set enumeration tree structure

called the FP-tree. The Apriori, AprioriTid and AprioriHybrid algorithms are therefore

discussed further in Sub-section 2.2.2.1, and FP-growth in Sub-section 2.2.2.2. The

FPM algorithm adopted with respect to this thesis is the TFP [29, 30], this is therefore

discussed further in Sub-section 2.2.2.3.

2.2.2.1 The Apriori Algorithm

The Apriori algorithm operates in an iterative manner by first identifying frequent 1-

itemsets and then using these to identify frequent 2-itemsets and so on in a “generate,

count-support and prune” loop. An important aspect of the Apriori algorithm (and

many other FPM algorithms) is the downward closure property of itemsets which is

used to limit the search space. This property states that an itemset cannot be frequent

if its subsets are not frequent. Some pseudo code describing the Apriori algorithm is

presented in Algorithm 2.1. Given I, a set of itemsets in a transaction dataset D, the

algorithm commences by generating the candidate one itemsets Ik (where k = 1); then,

for each itemset ai in Ik, the support for each itemset, ai.support, is obtained. For each

itemset ai where ai.support < σ (where σ is some support threshold), the itemset is

pruned from Ik. What is left in Ik are the frequent K = 1 itemsets. Now the itemsets

in Ik are used to generate the Ik+1 itemsets (thus using the downward closure property

of itemsets). The efficiency of Apriori (and similar algorithms) is significantly affected

when it is applied to very large datasets (that can not be held in primary storage) as

multiple scans through the database will be required. Thus, many modifications to the

Apriori algorithm have been proposed, for example AprioriTid and AprioriHybrid [7],

to address this issue.

AprioriTid uses a “vertical” representation of the data where each single attribute

has a Transaction ID list (a TID list) associated with it. The support for single items

is then simply the length of the appropriate TID list. The support for the two itemsets

is obtained from a single intersection operations; and so on. Algorithm 2.2 desribes the

pseudo code for AprioriTid. The algorithm commences by using the same candidate

itemset generation algorithm as Apriori for producing the candidate sets Ik. The al-

gorithm again proceeds in an iterative manner. At each iteration the algorithm scans

Ik and obtains the support of the itemsets using intersection operations. Each item in

Ik has a TID list associated with. The size of the intersection of the TID lists is then

the support for each item in Ik. If the support is ≤ σ, then the itemset will be pruned

from Ik. Then the process repeats until there are no more candidate itemsets.
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Algorithm 2.1: Apriori FPM algorithm

input : I,D and minimum support threshold σ
output: F

1 F= { };
2 k= 1;
3 Ck = I;
4 while Ck 6= ∅ do
5 for ∀c ∈ Ck do
6 Count support for c with reference to D;
7 end
8 for ∀c ∈ Ck do
9 if support c ≤ σ then

10 Prune from Ck;
11 end

12 end
13 F = F ∪ Ck;
14 k++;
15 Ck = the set of candidate k-itemsets derived from Ck−1;

16 end

In terms of speed, performance and memory management, reported experiments

indicated that AprioriTid outperformed the original Apriori algorithm when generating

large k-itemsets [44, 80]. Apriori performs better than AprioriTid in the initial passes

but in the later passes AprioriTid had better performance than Apriori. For this reason

a combination algorithm was introduced, called AprioriHybrid, in which Apriori was

used in the initial passes and AprioriTid in the later passes.

2.2.2.2 The Frequent Pattern-Growth Algorithm

Another established FPM algorithm is the Frequent Pattern (FP)-growth algorithm.

While Apriori develops itemsets using a candidate generation method, FP-growth uses

a partitioning-based, divide-and-conquer method [18, 50]. In common with a number

of other FPM algorithms, including TFP discussed in the following subsection, FP-

growth uses a set enumeration tree structure, the FP-tree, in which to store itemset

data. The pseudo code for FP-growth is shown in Algorithm 2.3. The algorithm starts

by calculating the support for each single item in I, unsupported items are pruned from

the dataset. The remaining items, in each transaction, are then ordered according to

their frequency and stored in FP-tree header table. The transactions are then stored

in FP-tree. What sets the FP-tree apart from other set enumeration tree structures

is that it includes additional links originating from the header table linking tree nodes

that feature the same label. The FP-growth algorithm proceed in a depth first manner

starting with the least frequent item in the header table. For each entry the support

value for the item is produced by following the links connecting all occurrences of the
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Algorithm 2.2: AprioriTid FPM algorithm

input : I, set of Tid lists, σ
output: F

1 F= { };
2 k= 1;
3 Ck = I;
4 for ∀c ∈ Ck do
5 Support c the length of corresponding TID list;
6 end
7 for ∀c ∈ Ck do
8 if support c ≤ σ then
9 Prune from Ck;

10 end

11 end
12 F = F ∪ Ck;
13 k = 2;
14 Ck = the set of 2-itemsets derived from Ck−1;
15 while Ck 6= ∅ do
16 for ∀c ∈ Ck do
17 Obtain support for c from the size of the intersection of the TID lists for

itemsets in c;

18 end
19 for ∀c ∈ Ck do
20 if support c ≤ σ then
21 Prune from Ck;
22 end

23 end
24 F = F ∪ Ck;
25 k++;
26 Ck = the set of k-itemsets derived from Ck−1;

27 end

current item in the FP-tree. If the item is adequately supported, then for each leaf

node a set of ancestor labels are produced each of which has a support equivalent to the

sum of the leaf node items from which they originate. If the set of ancestor labels is not

null, a new FP-tree is generated with the set of ancestor labels as the dataset, and the

process repeated. A disadvantage of FP-growth, when finding long frequent patterns,

is that many FP-trees may be generated and processed thus introducing additional

efficiency overheads. The benefit provided by FP-growth is that the ordering of the

1-itemsets according to their support, and the pruning of unsupported 1-itemsets at the

beginning of the mining process, reduces the size of input dataset thus contributing to

the efficiency of the approach (although there is no reason why this expedient cannot

be applied to other FPM algorithms).
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Algorithm 2.3: FP-growth Algorithm- Frequent itemset mining

input : I,D and minimum support threshold σ
output: F

1 for ∀c ∈ I do
2 Get support for c from D;
3 end
4 for ∀c ∈ I do
5 if c ≤ σ then
6 F = F ∪ C;
7 end

8 end
9 H = Header table of elements in C order in descending support;

10 D′ = D reordered according to ordering of H;
11 forall the h ∈ H do
12 Follow links through FP-tree and obtain support;
13 if h support ≥ σ then
14 add to F
15 end
16 Dtemp = set of items created by following through links;
17 Repeat process using Dtemp ad D;

18 end

2.2.2.3 Total From Partial

The Total From Partial (TFP) algorithm is an established FPM algorithm that, like

FP-growth, utilizes a set enumeration tree structure for fast lookup purposes [29]. TFP

is itself an extension of another algorithm, Apriori-T, which was developed as a more

efficient ARM algorithm than straightforward Apriori. Apriori-T uses a reverse set enu-

meration tree data structure, the Total support tree (T-tree), that facilitates fast “look

up”. TFP extends Apriori-T by introducing a second tree structure, the Partial support

tree (P-tree), in which partial support counts are stored. TFP offers advantages, with

respect to generating frequent item sets, in terms of time and storage efficiency; it also

provides a good data structure for finding association rules [30]. As noted above the

significance of TFP in the context of this thesis is that it is the foundation on which the

proposed TM-TFP trend mining algorithm is based (see Chapter 4). TFP is therefore

discussed in some detail in this section. The discussion is presented in terms of the

generation of the P-tree and the T-tree, the first is discussed in Sub-section 2.2.2.3.1,

and the second in Sub-section 2.2.2.3.2.

2.2.2.3.1 Partial support tree (P-tree)

The concept of the P-tree was introduced by Coenen et al. in [29, 30]. The P-tree

is described as a “preprocessing” tree structure (similar to the FP-tree) into which an

input dataset can be translated so that it is stored in a more concise way and at the same
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time some partial support counting can take place. Figure 2.1 shows an example of how

a P-tree is generated. Let D = {{A,B,C}, {B,C}, {A,B,E}, {B,D,E}, {A,D,E}}.
P-tree generation commences with the first record in D. The record {A,B,C} is stored,

together with its support count of 1, as a single P-tree node. The second record {B,C}
is stored in a second P-tree node, also with a support count of 1, and linked to the

first node so that it becomes a “sibling” of this first node. The next record {A,B,E}
has a common prefix {A,B} with the first P-tree node. This is therefore split into a

parent-child pair, with {A,B} as the parent and {C} as the child (both with a support

count of one). Then {A,B,E} is added by incrementing the count for {A,B} and

adding a further P-tree node for {E} as a sibling of {C} (with a support count of

1). The fourth record {B,D,E} shares a leading substring {B} with the P-tree node

representing {B,C}. This is therefore split into another parent-child pair {B} and

{C}. The fourth record is then included by incrementing {B} and adding {D,E} as a

sibling of {C}. The fifth record, {A,D,E}, is included in a similar manner by splitting

{A,B} and including {D,E} as a sibling of {B}.
Usage of the P-tree provides several advantages with respect to the generation of

frequent patterns:

1. Faster run times because the counting of pattern support is done partially as the

P-tree is constructed.

2. Reduced storage requirements with respect to large datasets where the likelihood

of duplicate records and common prefixes are high.

A comparison between the operation of the FP-tree and the P-tree was conducted

by Ahmed et al. [9]. Despite similarities in their structure Ahmed et al. highlighted

two distinctions between the two:

1. The FP-tree is a more pointer-rich data structure which leads to a more compli-

cated implementation, whereas the P-tree is simpler to implement.

2. P-tree nodes seek to hold sequences of item sets which are partially closed, while

the FP tree nodes hold separate itemsets.

The internal representation of the P-tree presented in Figure 2.1 is given in Figure

2.2. From the figure it should be noted that a P-tree node has four elements: (i) the

node code, (ii) the support value, (iii) a reference to a potential sibling node and (iv)

a reference to a potential child node.

2.2.2.3.2 Total support tree (T-tree)

The T-tree is used in the second stage of the TFP algorithm where frequent patterns are

identified. A T-tree is a reverse set of enumeration tree that is used to store frequent
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Figure 2.1: P-tree generation

patterns. Each level in the T-tree is actually an array (some authors refer to this

structure as a trie). Items are stored “in reverse” as this is facilitated by the indexing

mechanism permitted by the use of arrays. This indexing also facilitates fast look up

[29]. The T-tree is generated in an apriori manner (see above) from the P-tree. In

otherwords the T-tree is generated level by level starting with level 1 (one item sets).

Figure 2.3 illustrates the T-tree constructed using the P-tree presented in Figures 2.1.

The example assumes that the support threshold for frequent patterns is σ = 2. The

T-tree includes nodes for all the items that may exist at a particular level. Initially

the support for each node is set to 0. Then, the support counts are updated (Figure

2.3(b)) as a result of a traversal of the P-tree. Then Level 1 pruning is done so that

nodes that do not have support above σ = 2 are “removed”. The following level in the

T-tree is constructed from the supported nodes in Level 1. Followed by level 2 pruning

(Figure 2.3(d)), and so on.

The T-tree data structure provides a number of claimed advantages [9] that lead to
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an efficient mining process:

1. The size of the storage requirements for the T-tree is less than that required by

other tree structures (such as the FP-tree).

2. The fast lookup facility provided by the indexing mechanism.

Given the benefits of P-tree and T-tree data structures discussed above, the TFP

algorithm is used as the foundation for the frequent pattern trend mining algorithm,

proposed later in this thesis (Chapter 4).

2.2.3 Alternative FPM algorithms

Many FPM algorithms adopt similar approaches to those described above. From the

literature there are also some more unusual approaches and techniques. Examples of
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note include the use of clustering [33] and linear lists [121]. These two approaches are

therefore briefly described in this sub-section so as to complete the discussion of FPM.

In [33] an FPM mining algorithm founded on a clustering method was proposed

to identify co-occurrence patterns in data streams. In this technique the data stream

was processed using a sliding window of size k ≥ 1, the algorithm then calculated the

support of patterns as it screened the data streams.

Another technique for searching frequent pattern, described in [121], created a sim-

ple linear list structure called a Frequent Pattern List (FPL). The proposed FPL algo-

rithm dissected the transaction database into smaller parts without intersection, and

then compressed and stored the transactions into the FPL. However, the FPL struc-

ture has disadvantages concerned with complexity because of the recursive building of

sub-FPLs, and also because it is likely to generate duplicate frequent patterns.
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2.2.4 Applications of FPM and Concerns

FPM has been applied in isolation in many subject areas. Exemplars of FPM appli-

cations are studies of gene expression data in bioinformatics [10], evaluation of user

activity patterns from web logs [56] and assessment of drug reactions from patients

[25]. These FPM applications are mainly concerned with the discovery of patterns and

their associated frequency in large datasets.

One of the concerns when generating frequent itemsets from a large dataset is that

when a low minimum support threshold is set, there is a high probability of having

a large number of frequent itemsets many of which may not be interesting in the

context of knowledge discovery. However, applying a low minimum support threshold

is necessary so as not to miss any unusual interesting frequent patterns. Much research

work has been directed at the efficient mining of large frequent itemsets with low

support counts. One example is in cancer detection where scientists are looking for

abnormal gene patterns which have a low support occurrence in the database [136].

Due to the complexity of this data, Yu et al. discuss the use of emerging patterns

and jumping emerging patterns to describe the characteristics of cancer abnormal gene

patterns. This is because abnormal gene patterns only appear in cancerous tissues but

never occur in normal tissues. Thus, in cancer detection, it is important to monitor the

low occurrence patterns in human tissues. With respect to the mining process proposed

in this thesis, low support thresholds are used to produce frequent patterns so as to

avoid any risk of missing potentially significant patterns and trends.

Besides application with respect to static data, FPM can also be applied to gen-

erate frequent patterns from sequence data. There are a number of FPM algorithms

that have been introduced to mine patterns from sequence data such as SPACE [139],

sequential episodes [85], sequential patterns [8] and GSP [113]. In this thesis, the col-

lection of frequent patterns and support counts is obtained over an ordered sequence

of time stamps to describe trends. Trend analysis can then be applied to the detected

temporal patterns and trends. Using the advantages offered by the P-tree and T-tree

data structures, this research has extended the TFP algorithm to process time series

data to generate temporal sequences of frequent patterns. Thus, in the following section

several temporal mining and related topics are reviewed and discussed.

2.3 Temporal and Spatial Data Mining

As in the case of data mining in general, advances in data storage mechanisms has

also afforded many organizations the opportunity to store significant amounts of tem-

poral and spatially referenced data. Consequently, a range of data mining techniques

have been proposed that extend established techniques to address the spatial and tem-

poral elements of data, i.e. spatial and temporal data mining. Spatial data mining
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is concerned with the idenfication of geographically referenced patterns, while tempo-

ral data mining is concerned with the identification of temporally referenced patterns.

Temporal-spatial (or spatio-temporal) data mining is a combination of the two. The

work proposed in this thesis adapts some of the concepts of temporal mining in that

the proposed technique processes a sequence of time-stamped data to study frequent

pattern trends. The assumption is also that the social network data of interest will in-

clude some spatial or geographic information. Sub-sections 2.3.1, 2.3.2 and 2.3.3 review

related work in temporal, spatial and temporal-spatial data mining respectively.

2.3.1 Temporal Data Mining

Temporal or time series data mining, as noted above, is directed at data that includes

sequences of events [12]. The main aim of temporal data mining is to discover temporal

relationships between items in time stamped data [106]. This then allows for (say) the

identification of trends and change points within the data. Many approaches have been

explored in the context of temporal data mining. Two common approaches are time

series analysis [20, 64] and sequence analysis [139].

In this section the literature concerning work on time series data mining that is

focused on the analysis of periodic data and prediction is described. One exemplar, Liu

et al. [83], proposed an automated time series mining technique to predict and analyze

time series in the context of fast food franchise operations data. The study used a model,

called the Box-Jenkins seasonal AutoRegressive Integrated Moving-Average (ARIMA)

model, to perform analysis and forecasting for inventory management and planning, and

potential sales opportunities. The original Box-Jenkins model consisted of an iterative

three-stage process of model selection, parameter estimation and model checking [22].

Liu et al. improved this original Box-Jenkins model to produce an automatic time

series modeling procedure which has been employed to investigate periodic time series.

Additionally, the model used an automatic outlier detection and adjustment procedure

for both model estimation and forecasting.

In time series analysis, periodic patterns are the patterns that appear in a specific

sequence. Han et al. [48] proposed a technique for the mining of partial periodic

patterns in time series databases. They focused on partial periodic patterns which

are periodic patterns that appear in a subset of all the time series; the significance is

that such patterns will receive less attention when the mining process is applied to the

complete dataset. They tested the periodic time series using a drill-down method which

repeatedly processed the discovered periodic patterns to see whether these patterns

were still periodic at a lower level (done to some smallest subsets of the time series

interval). Instead of looking at the periodic patterns, the work in this thesis is directed

at frequent patterns trends. Moreover, this idea of “drilling down” into time series data

has motivated work on prediction modeling described later in this thesis. Research
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reported in [140] was directed at detecting frequent patterns in financial time series.

This study proposed an automated pattern-spotting technique that utilised various

data mining and optimization mechanisms such as neural networks, decision trees,

regression, and genetic algorithms.

2.3.2 Spatial Data Mining

Spatial data mining, as the name suggests, is concerned with the application of data

mining methods to spatial data. Spatial data is data which has one or more loca-

tion components so that the individual data objects can be conceptualised as being

located in a physical space [38, 75, 111]. In general, spatial data mining has similar

objectives to classical data mining. However, spatial data tends not to have the same

structure as other data. Thus, a number of techniques have been proposed to explore

suitable DM functions to mine spatial data. For example, Ester et al. [40] proposed

a spatial DM framework that encompasses spatial clustering, spatial characterization,

spatial trend detection and spatial classification. These DM tasks process the database

according to spatial neighborhood measures that include topological, distance and di-

rection relations between objects. Another study, Ceci and Appice [23], introduced

an associative approach to classify spatial data objects. The study compared two ap-

proaches: (i) a propositional approach that used spatial association rules to construct

an attribute-value representation and perform spatial classification by applying classi-

cal classification algorithms, and (ii) a structural approach which used an extension of

the Naive Bayes classifier to classify the multi-relational spatial data so as to generate

multi-relational association rules.

2.3.3 Temporal-Spatial Data Mining

As already noted above, temporal-spatial data consists of temporal and spatial features

that can be subjective depending on the perspective of the data users. In general, data

used in temporal-spatial data mining can be categorized as follows [106]:

1. Static: Data that has no explicit temporal-spatial context:

• Temporality of data is described in terms of a sequence of events.

• Spatiality of data is presented in general terms describing a location such as

high land or wet land.

2. Fully temporal-spatial: Data that includes specific attributes that relate to time

and/or location:

• Temporality of data is described with time-stamped events.

• Spatiality of data is described with geometrics or geographical locations such

as latitude and longitude coordinates.
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From the literature it is possible to identify a number of general spatial temporal

DM tasks and techniques that may be applied, for example mining frequent temporal-

spatial patterns [45] and spatio-temporal classification [138]. Another exemplar, Mennis

and Liu [88], used ARM to explore the spatial and temporal relationships within geo-

graphic urban growth data. The temporal data, and also the geographic maps, were

converted into a tabular form to be processed by conventional Association Rule Mining

software. In general, the combination of both the temporal and spatial dimensions adds

substantially to the complexity of the data mining task. Thus, traditional data mining

techniques may not be applicable, or need to be extended to accommodate temporal-

spatial aspects. Table 2.1, taken from [135], provides some details on several tasks and

techniques for mining temporal-spatial data. From the table, a DM task, for example to

segment or categorise temporal-spatial data, may employ one of a number of clustering

and classification techniques such as: cluster analysis, Bayesian classification, decision

trees or artificial neural networks.

Temporal-spatial
Data Mining task

Descriptions Techniques

Static spatial
data

Temporal-spatial
data

Segmentation Clustering •Cluster Analysis •Temporal exten-
sion to clustering

Classification •Bayesian classifi-
cation

•Temporal exten-
sions to classifica-
tion

•Decision tree
•Artificial neural
networks

Deviation and
Outlier Analysis

Finding rules and re-
lationships between at-
tributes over time

•Association
rules

•Temporal associ-
ation rules

•Bayesian net-
works

•Temporal exten-
sion to Bayesian
networks

Trend Discovery Prediction of lines and
curves,

•Discovery of
common trends

Sequence mining

Summarising temporal
database,

•Regression

Discovering correlations
among the events in se-
quences

Table 2.1: A possible classification of spatial temporal DM tasks and techniques [135]
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2.4 Trend Mining

Another perspective of temporal data mining is trend mining. Broadly speaking, trends

are indicators of change over time with respect to some activity. The application of DM

to time series data allows for the identification of trends and changes in trends. The

research described in this thesis is concerned with the identification of temporal-spatial

patterns (referred to as “combination patterns”) that change over a period of time.

Reported work on trend mining has been directed at the forecasting of financial market

trends based on numeric financial data, and the usage of text corpi in business news

[114]. Other examples of mining trends using temporal and spatial data can be found

in biomedical research [84], environmental protection [63] and road traffic management

[108]. In this section, Sub-section 2.4.1 discusses previous work on trend mining, fol-

lowed by Sub-section 2.4.2 which briefly discusses a few related studies concerning trend

analysis.

2.4.1 Example of Types of Trend Mining

In the context of this thesis, trends are defined in terms of the frequency counts (sup-

port) associated with individual patterns. Given this definition, it is possible to iden-

tify some similarities with the work on Jumping and Emerging Pattern (JEP) mining.

Jumping patterns are usually defined as patterns whose support changes dramatically

from one time stamp to another. Emerging patterns are then a special form of jumping

pattern where the support changes from below σ to above σ over two consecutive time

stamps. An example of work on JEP mining cam be found in [66], where a moving

window approach was adopted to identify JEPs. JEP mining has found application in

a number of areas, one example is in medical research where JEPs have been used to

monitor the progress of cancer cells [136].

In another study, found in [123], an iterative time-series trend mining mechanism

was developed to identify associations in discovered frequent trends using categorical

and continuous time-series datasets. The concept of frequent pattern trends defined in

terms of sequences of frequency counts has also been adopted in [112] in the context of

longitudinal patient datasets. In [112] trends are categorised according to pre-defined

prototypes and are grouped using a clustering method. The discovered trends from

data episodes in this work were described as increasing (emerging), ups and downs,

stable and jumping as shown in Figure 2.4.

Figure 2.5 shows an example of a time series of the form considered in this thesis.

The time series given in Figure 2.5 is defined by the frequency counts for a pattern X

collected over a period t. The granularity of t can be defined as required by the user

(for example weeks, months, or years). Clearly from the given trend, useful information

can be derived by observing where significant change points occur in the trend line.
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Figure 2.4: Types of trends

2.4.2 Trend Analysis

Trend analysis refers to the concept of collecting information over a period of time to

recognize positive or negative movement or changes in data (where the data typically

describes an event or activity). While trend analysis is often used to forecast future

behaviors, it may also be used to assess events in historical data. Trend analysis can

be valuable as an advanced indicator of some potential problem or issue, for example

decreasing trends in sales of a product line.

Trend analysis has been applied in many areas like health [58], climate [128] and

human behavior [11]. Examples can also be found in the context of social network

analysis. For example, Gloor et al. [43] introduced a novel trend analysis algorithm to

generate trends from Web resources. The algorithm calculates the values of “temporal

betweeness” of online social network node and link structures to observe and predict

trends concerning the popularity of concepts and topics such as brands, movies and

politicians. Likewise, some research directed at recommender systems [17, 137] and

online market research [61] focuses on trends describing online social interactions and

trusts so as to improve online marketing and sales strategies.

An important aspect of trend analysis is change point detection (some examples

change points were highlighted in Figure 2.5). From the literature, a number of exam-

ples mechanism directed at identifying change points can be identified. For example,

Taylor introduced a control chart as a change point analysis tool to detect changes in
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Figure 2.5: Significant Change Points in a Trend.

data and describe the characteristic of these changes [117]. Change point detection

has also been considered with respect to a variety of applications. In [39] a system

for highlighting change points in historical temperature data was described. In [21] a

system was described for detecting change points in Biodiversity measure trends so as

to identify species habitat changes.

2.5 Clustering techniques

As mentioned earlier, one of the research issues considered in this thesis is how to anal-

yse large numbers of discovered frequent patterns trends. It is proposed that clustering

is a fitting method to categorise large numbers of patterns and trends. Clustering is a

commonly adopted method used to group data. This section describes the basic con-

cept of clustering. The approach adopted in this thesis is to use Self Organising Maps

(SOMs). SOM technology is therefore considered in Sub-section 2.5.1, followed by a

short discussion on cluster analysis in Sub-section 2.5.2.

Clustering is an unsupervised learning method for grouping similar data into “clus-

ters”. Clustering has been used in many areas such as biomedical analysis, marketing

strategies and environmental monitoring. Clustering algorithms operate in different

ways. In some cases the desired number of data clusters is predefined, in other cases

the clustering algorithm “works it out for itself”. Clustering algorithms typical operate

using some measure of similarity, usually a distance measure is used. Clustering tech-
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nique can be categorised into partitioning methods, hierarchical methods, density-based

methods, grid-based methods and model-based methods [50]. Among the most popular

clustering algorithms and techniques are K-Means, K-Nearest Neighbour, Hierarchical

Clustering and Self Organising Maps:

1. K-Means is a data partitioning technique that divides a dataset into K clusters,

where K is predetermined a priori. Each data record belonging to a given dataset

is assigned to one of the k-clusters by calculating its distance to the nearest

cluster centroid. The algorithm then re-calculates the centroids for the clusters

and processes the data again. This procedure continues until the centroids become

“fixed”.

2. K-Nearest Neighbour is a clustering technique that classifies a dataset by calcu-

lating distance between data records. Initially, the first data record, d1, in a given

dataset is used to derive a cluster K1; then the next data record is considered

by determining the distance to the d1. If the distance is below, τ , a distance

threshold, then it will be added to K1 otherwise a new cluster, K2, is created.

The process continues in an iterative manner until all records are considered.

3. Hierarchical clustering is a method for clustering relatively similar data records

or sub-clusters based on measured characteristics, i.e. distance and cohesion,

by creating a cluster tree or dendrogram. There are two types of hierarchical

clustering: (i) Agglomerative (bottom-up), and (ii) Divisive (top-down). The ag-

glomerative hierarchical clustering process begins by considering each record to

belong to a single cluster. The two most similar clusters are merged. This merg-

ing process continues until a suitable cluster configuration is arrived at (measured

in terms of cohesion and separation). The Newman method [91] is an established

agglomerative hierarchical clustering algorithm. The divisive hierarchical cluster-

ing initially groups the entire dataset into one cluster. This cluster is then split

into two clusters. This splitting process continues in an iterative manner, until a

suitable cluster configuration is arrived at.

4. A Self Organising Map is a topological clustering tool often used to provide a

low-dimensional view of high-dimensional data. It groups the records in a given

dataset by assigning records to nodes in the map according to a similarity mea-

sure. SOMs are discussed in further detail in Sub-section 2.5.1.

2.5.1 Clustering Trends using Self Organizing Maps

Self Organising Maps (SOMs) were first introduced by Kohonen [73, 74]. Fundamen-

tally, a SOM may be viewed as a neural network based technique designed to reduce

the number of data dimensions in some input space by projecting it onto a n×m “node
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map” which groups (clusters) similar data items together at nodes. SOMs have been

utilized in many research areas. For example SOMs have been used for: clustering gene

expression data [125], glaucoma image clustering [134], image retrieval [115] and stock

price forecasting [47].

The SOM learning process is unsupervised. Nevertheless, the n × m number of

nodes in the SOM must be prespecified. Currently, there is no scientific method for

determining the best values for n and m. However, the n × m value does define a

maximum number of clusters; although on completion some nodes may be empty [31].

The main components of a SOM are the input data (D) and a set of weight vectors

(W ) to which distance and neighborhood functions are applied to determine which

nodes the records in D should be associated with. In Figure 2.6, for example, a SOM

map (lattice) comprising 4×4 nodes is presented, each node has n values of weight (w)

where n is the dimension of the input data. Each weight has its own unique location

in the lattice.

Figure 2.6: A view of 4× 4 nodes with n weights

Algorithm 2.4: The basic SOM algorithm

input : D, the input dataset
output: SOM

1 Initialize weights;
2 for i← 1 to | X | number of training epochs do
3 Get x from D;
4 Find the “winning” map node for the sample input;
5 Adjust the weights of nearby map nodes;

6 end

32



In the SOM map each record is associated with only one SOM node. Algortihm

2.4 describes the basic SOM algorithm. Firstly, the weight vectors are initialized using

a random number generator. Then, the algorithm processes the input data, record by

record. For each record, each node “bids” for the record and the record is assigned

to the “winning” node. This is done using a distance function. The most common

distance function is the Euclidean distance function (2.1):

d =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

where xi is the ith value of input data and n is the number of dimensions in the input

data. If there are two or more weight vectors with the same shortest distance, the winner

node is chosen randomly. Subsequently, the algorithm adjusts the neighbouring weights

of the winning node to reflect the nature of the most recently assigned record. The

most popular mathematical function used in this calculation is based on the Gaussian

function (2.2). The magnitude of the adjustment is decreased as the distance from the

current node increases.

hj,i(x) = e
d2j,i

2α2 (2.2)

Thus SOM generation is an iterative process; it uses a learning function that de-

creases with a learning rate ranging between 0 and 1. As the algorithm iterates, it

updates (tunes) neighbourhood weights with new values. This adaptive process is

based on the function (2.3):

w(t+ 1) = w(t) + α(t)(x(t)− w(t)) (2.3)

where w is the selected “excited” weight in the set of topological neighbours, t is the

current iteration counter, α is the learning rate in the learning process. Finally, once

all records in the training data have been processed, a complete map will be produced

representing the records in terms of a set of prototypes (one prototype per node).

With respect to the work described in this thesis, a SOM approach has been adapted

to group similar trends, and thus provide a mechanism for analysing social network

trend mining results.

2.5.2 Cluster Analysis

This thesis also describes a trend cluster analysis method. Cluster analysis involves

observing and recognizing cluster changes in terms of (say) cluster size or cluster mem-

bership. There are several reported studies concerning the detection of cluster changes

and cluster membership migration. Denny et al. [35] proposed a technique to detect

temporal cluster changes using SOMs to visualize emerging, splitting, disappearing,
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enlarging or shrinking clusters; in the context of taxation datasets. Lingras et al. [81]

proposed the use of Temporal Cluster Migration Matrices (TCMM) for visualizing clus-

ter changes representing e-commerce site usage. As will become apparent later in this

thesis, a related idea founded on the concept of migration matrices, will be proposed.

Hido et al. [53] suggested a technique to identify changes in clusters using a decision

tree method.

In the work described in this thesis, as noted above, trends are grouped using a

SOM. Each node in the SOM map represents a collection of trends and is referred to

in this thesis as a trend cluster. The envisioned Predictive Trend Mining Framework

considers sequences of trend clusters each represented by a SOM map. By compar-

ing two SOM maps we can see how patterns may move (or not move) between time

stamps. This migration of trends can be conceptualised as a (social) network in its own

right. To analyse how trend clusters change over time we can apply cluster analysis

techniques to these networks. As will become apparent later in this thesis the analysis

will be founded on the concept of hierarchical clustering; more specifically the Newman

Hierarchical Clustering algorithm mentioned in Section 2.5. Hierarchical clustering is

widely used as a cluster analysis tools. Examples of its application in the context of

cluster analysis include: identification of the similarity and dissimilarity between cancer

cell clusters [93], detecting road accident “black spots” (road traffic cluster analysis)

[124] and determining the relationship between various industries based on the move-

ments of financial stock prices [131]. As noted in Section 2.5, Hierarchical clustering

can be viewed as a mechanism for identifying communities of clusters according to some

similarity value [50].

The following section considers social network analysis and social network mining,

the central theme of the work described in this thesis.

2.6 Social Network Analysis and Social Network Mining

This section discusses the concept of social networks and the structure of social net-

work data. A social network describes a social structure of individuals or organisations,

who/which are connected directly or indirectly based on a common subject of interest,

friendship, business activity or financial exchange. The network depicts the relation-

ship between the social entities, which normally comprise “actors”, who are connected

through ties, links or pairs [70, 126]. A social network may depict informal and/or

formal connections/communications between actors.

Using social networking sites such as MySpace, Facebook, Twitter, YouTube and

Linkedln, individuals are able to “hook up” with one another is an effective manner.

Figure 2.7 provides a network traffic report by ComScore Inc. on the number of users

of Facebook and Myspace in the United States of America between August 2005 and

May 2011 [82]. The figure indicates that social network site usage has increased over
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the last 5 years. In June 2006, a group study found that 240 million people were using

Microsoft Instant Messenger to conduct 30 billion instant messenger conversations. The

result was that the average path length of the conversations among the anonymized

users explored was 6.6 [79].

Figure 2.7: Comparison of Facebook and MySpace growth [82]

Social networks are not limited to social networking sites. In the wider context

social networks can include business communities, file sharing systems and co-authoring

frameworks. The work described in this thesis considers social networks according to the

widest interpretation of the term. In the following two Sub-sections further discussion

is presented concerning: (i) work related to social network analysis (Sub-section 2.6.1)

and (ii) social network mining techniques (Sub-section 2.6.2).

2.6.1 Social Network Analysis

Inspired by the theory of Six Degrees of Separation [69], researchers have started to

explore the networks or relationships between people built through friendship, society

and economic factors. To analyze the network structure, many social network analysis

techniques have been proposed which map and measure the relationships and flows

between actors.

Social Nework Analysis (SNA) is the study of social networks with respect to their

structure and behaviour [87]. The intention of SNA is to map and measure the rela-

tionships and flows between actors in the network. As described above, the principal

components in a social network are the nodes and the relational ties. Nodes in the net-

work typically represent people, corporations or groups, while relational ties illustrate
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relationships between the nodes. SNA has gained prominence due to its practicality in

identifying relations within social network data with respect to many application areas

such as: marketing, organization management, and spread of disease. SNA utilizes

network data which contains at least structural variables measured over a set of ac-

tors [70, 126]. Structural variables describe quantities that measure the social network

structure; for example the “strength” of the relationships between actors. Structural

variables can be used to dimension a specific relationship between pairs of actors, for

example the degree of friendship or communications between actors. Alternatively, the

analyst may consider composition variables which are measurements of actor attributes

like gender, age or race. Depending on the application, network data analysts may use

a variety of variables from the network datasets.

Social network analysts often use graphs and matrices to visualize the information

represented by patterns of nodes and links [51, 126]. The methods of projecting the

graphs and matrices are typically adopted from mathematics and are referred to, in the

context of social networks, as sociographs or sociograms and sociomatrices or adjacency

matrices. A sociograph (sociogram) normally displays network drawings that consist

of points (nodes) to represent actors and lines (or edges) to represent ties or relations.

In the sociograph the positions of the nodes are unconstrained by coordinates, and the

distances between the nodes and angles between the lines of a network drawing are

insignificant. Sociomatrices (adjacency matrices) describe relations between actors in

tabular forms. If there is an intersection of actor A (in a row) and actor B (in a column),

the matrix is marked as “1” which indicates there is an “incidence” between the two

actors otherwise “0” is recorded. Knoke and Yang [70] described several other methods

for analysing networks, apart from graphs and matrices. These methods include using

relationship measures, centrality, visual displays and block models to analyse the actor-

link structures.

In another SNA approach presented in [51] the analysis is conducted on an entire

population, rather than randomly sampling the network data. This is done through

observing the frequency of interaction or intensity of links among the actors, such as

observing the volume of link “traffic”. Since SNA focuses on relationships among actors,

actors cannot be sampled independently; for example, if an actor, X, is selected, then

all other actors who are linked to X must also be selected as members of the population.

There are several types of social networks which can be identified. The category of

a network is determined by the complexity of the sets of actors and properties which

link them together. Social network analysis can be described in terms of the mode,

which means the number of distinct categories of social entity in the social network

[126]. A one-mode network involves measurements on just a single set of actors, a two

mode network involves measurements over two sets of actors or a set of actors and a

set of events. A diversity of techniques have been developed to study social networks.
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Social network analysis has been proposed as a key technique to examine the interests

and issues in sociology subject areas. The majority of social network analysis tools

are based on traditional statistical and mathematical models to measure the structure

of a given social network. A recent research area is social network mining, where the

objective is to find hidden knowledge in social network data.

2.6.2 Social Network Mining

There has been a rapid increase in interest, within the data mining community, regard-

ing the mining of social networks. Because of the demand, a number of Social Network

Mining (SNM) techniques have been introduced to identify knowledge concerning the

social behaviour of users on online environments [32, 101]. Data mining based tech-

niques are proving to be useful for the analysis of social network data, especially with

respect to large datasets.

Originally, social network mining approaches tended to be founded on graph mining

techniques; but recently classification, clustering and link mining have also gained pop-

ularity. Typical social network mining applications include: (i) the discovery of disease

spreading patterns from dynamic human movement [76], (ii) the monitoring of users’

topics and roles in email distributions [87], and (iii) the filtering of product ratings from

online customer networks for marketing purposes [37].

There are several case studies that describe the modification of traditional data

mining methods for application to social network data. There are examples of super-

vised and unsupervised data mining methods that have been modified to suit richly

structured social network data. For example in the case of mining email social net-

works, researcher have applied clustering algorithms to categorize the mailings, in an

open-source software public forum, in order to identify the communication and coor-

dination activity patterns of the participants on exchanging source codes [15]. The

clustering algorithm used email IDs and clustered them as distinct email personalities

despite the possibility that some email users may have several aliases.

SNM can be applied in a static context, which ignores the temporal aspects of the

network; or in a dynamic context, which takes temporal aspects into consideration.

In the static context the analysis is directed at either: (i) finding patterns that exist

across the network, (ii) clustering (grouping) sub-sets of the networks, or (iii) building

classifiers to categorize nodes and links in a “snapshot” of the network. In the dynamic

context, a different or extended kind of analysis can be applied to identify relationships

between the nodes in the network by evaluating the spatio-temporal co-occurrences of

events [78]. A central element of the work described in this thesis is directed at mining

social networks in the dynamic context, specifically in terms of the trends and change

points that may exist within social networks.
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2.7 Prediction Modeling

There are studies on how information moves across a network, for example how neigh-

bouring nodes influence viral marketing [104]. These studies have shown how informa-

tion percolates from one node to another. As a result, activity spread across a network

can be predicted. Another main objective of the research described in this thesis is pre-

diction modeling in social networks. In the following sub-section, the concept is defined

and reviewed in comparison to other related studies (Sub-section 2.7.1). Sub-section

2.7.2 then reports on a number of studies for prediction modeling in social networks.

2.7.1 Prediction and Data Mining

In data mining, prediction is a similar process as classification. However, prediction

does not necessarily require a categorical class label to be included in the attribute set

[50]. Prediction modeling is a significant analytical task concerned with predicting the

probability of a future event or trend based on current and historical data [1]. Prediction

modeling has been used in several application domains such as the prediction of disease

spread, customer relationship management and social media. For example Kiss and

Bichler [68] have conducted work directed at phone call and text messaging networks

to propose a predictive model to improve customer relationship management. Christley

et al. [26] studied centrality measures in a simple random social network to determine

the probability of infectious animal diseases. Tseng and Lin [122] studied data streams

from mobile web systems to generate user behaviour patterns and make predictions

based on user location and requested services.

2.7.2 Prediction Modeling in Social Network

Neville and Frost [90] identified two types of social network modeling: descriptive and

predictive modeling. Descriptive modeling views social relationships, in terms of net-

work theory, as consisting of nodes and ties (edges, links, or connections), and also

categories of social communities that may exist within a network. Whereas, predictive

modeling is concerned with methods to analyse the changes in links or edges in a net-

work, and also predict information (feature/attributes) interchange across a network.

A number of studies have proposed techniques to predict how social networks behaviour

may change over time based on historical data activity. For example the predicting and

profiling of the behaviours of online bloggers for application in recommender systems

[24]. Taskar et al. [116] experimented using relational Markov Network algorithms to

predict relational entities and link relationships in networks. Lampos and Cristianini

[77] presented a technique to track flu related infection in the UK using the content

of Twitter. Their method scanned the content using textual markers and then com-

pared the statistical result with the Health Protection Agency’s flu rates. However,
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the method needed to filter the text to remove instances of media hype or discussion

rather than actual flu cases. In another setting, Backstrom et al. [13] introduced an

algorithm that predicted the relationship between geographical location and friendship

among Facebook users. The algorithm confirmed (not unexpectedly) that when the

distance between locations increases, the likelihood of friendship decreases. This thesis

proposes a prediction modeling technique to indicate the probability of particular in-

formation or events traveling across a network; for example how animal disease might

spread across a network.

Several studies have proposed prediction modeling for social networks using tech-

niques such as regression analysis, decision trees and Bayesian networks. As noted in

the foregoing section, social network analysis was first conducted from a static per-

spective. Subsequently, researchers have explored the dynamic behaviour of networks.

The dynamic evaluation of social networks is conducted by identifying the changes (e.g.

trends) that occur across a given network, such as an increase in the number of edges

and nodes. Xiang et al. [133] developed an unsupervised model to estimate relationship

strengths in networks by studying user similarity and interaction. Another interesting

prediction model, proposed in Khan [65], introduced a “predictive matrix” for pre-

dicting efficient sales based on several characteristics such product colour, customer

gender and sales season. The matrix is built after extracting frequent patterns from

sales data, and the prediction is made based on the frequency counts of combinations

of frequent patterns. The work described in this thesis also uses frequent patterns and

frequency counts to predict events; however, the frequency counts are collected in terms

of trends. Thus, prediction modeling by considering identified trends so as to predict

future activities in a network.

2.8 Visualisation

The term “visualisation”, as used in this thesis, refers to techniques to illustrate the

findings of data mining activities. Visualisation often acts as a powerful analytical tool

to communicate and present data mining results. This section describes some related

work on visualisation in DM in Sub-section 2.8.1. Then Sub-section 2.8.2 introduces

the Visuset visualisation tool, which was extended to support the work described in

this thesis.

2.8.1 Visualisation in DM

The objective of visualisation tools in DM is to support user understanding of the

end results. The output of DM processes can be complicated to comprehend. One

of the often identified issues in DM that needs to be addressed is the visualization of

discovered knowledge [27]. According to a survey conducted by Rexer Analytics [3],
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a group of data miners noted that they faced challenges in explaining the essence of

DM results. Han and Gao [49] also pointed out that effective and efficient visualization

tools should be investigated further to determine how they might support the analysis

of DM results.

It is generally acknowledged that the visualization of DM results should serve to

enhance the users’ understanding [118]. The users’ need to understand the context

of the discovered “hidden” knowledge within the datasets, for example what is the

relationship and causal association between attributes? Thus, the visualisation or rep-

resentation of data mining output should be meaningful. Also, users should be able to

interact with the visualisation so as to get further clarification of the results. There are

a number of DM software systems, for example WEKA, that include facilities to allow

data miners to visualise DM results [130]. MineSet is a DM visualisation tool developed

by Silicon Graphics in 1996 [72]. The JUNG programming toolkit was introduced to

provide visualisation support for social network mining [89]. JUNG stands for Java

Universal Network/Graph, and is a Java library that provides several algorithms that

allow social network miners to visualize dynamic graphs by adding or removing nodes

and links.

There is also some reported work on data visualisation of temporal data and trends

[5] and cluster change [35]. Jung [59] proposed a technique for the visual illustration

of recommender system to help users to make more effective decisions. Another study,

Rossol et al. [107], recommended the usage of a 3D framework for real-time geospatial

temporal visualization by evaluating livestock movement data for tracking and simu-

lating the spread of epidemic diseases. The significance of the latter is that live stock

tracking is one of the exemplar applications considered in this thesis.

The work described in this thesis, implements three visualization methods for: (i)

the visualisation of large numbers of frequent pattern trends in terms of trend clusters,

(ii) visualising communities of clusters in the context of trend migration and (iii) visu-

alizing the predicted migration of trends. This thesis utilizes Visuset to illustrate the

outcomes from the proposed social network mining.

2.8.2 VISUSET

Visuset is a 2-D visualization software tool that was developed for chance discovery [86].

It represents node communities, using a 2-D drawing area, based on the Spring Model

[60]. It highlights which nodes are connected directly and indirectly with other nodes in

detected communities which are depicted as “islands”. Nishikido et al. [94] presented

Visuset as an animation interface to illustrate change points in keyword relationship

networks. This was considered to be a chance discovery tool because it discovered

significant candidates (keywords) that benefited the utilization and selection process.

Visuset provides a clear animation of communities of clusters to highlight which clusters
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connect to which clusters. The significance of Visuset is that the research described

in this thesis extended Visuset to support trend cluster analysis and visualisation of

significant dynamic cluster changes in sequences of data.

There are alternative visualisation tools that could have been adopted with respect

to the work described in this thesis. For example, Kandogan [62] developed a system to

display multi-dimensional data in a two dimensional surface as a scatter plot. However,

no indication was given of the inter relationships between data points. Visuset groups

data into “islands”, data within an island is closely linked according to co-relationship

values. Visuset thus highlights the nature of the groupings that exist and how the

data is correlated. Havre et al. [52] described a technique for displaying thematic

changes as river flows, so that changes of topics can be observed. However, unlike

Visuset, the relationships between topics are not considered. Chen [25] described a

system to visualize a network so as to identify emerging trends. However, the network

is displayed with respect to a specific time stamp. Therefore changes in trends cannot

be easily observed. The extension of Visuset described later in this thesis illustrates

trend transitions as an animation so as to demonstrate how trends change over a given

period. Robertson et al. [105] introduced a system to also show trends by animation.

Their method illustrated changes in the data in the form of traces, but changes are

considered independently. In the proposed Visuset approach, trends are correlated

against one another so that observers can see how groups of trends change with time.

2.9 Summary

This chapter has presented an overview of work related to the general concept of KDD

and DM, Association Rules and FPM, temporal spatial DM, clustering and trend clus-

ter analysis, social network mining and visualization in DM. The related work in DM

techniques, such as FPM, provided several insights to the proposed module for iden-

tifying temporal frequent patterns and trends. TFP was selected as the foundation

algorithm and was extended to suit the nature of sequences of social network data.

As noted in many FPM experiments, large numbers of patterns are typically discov-

ered which tends to hinder the user’s interpretation of DM results. Thus the use of

clustering techniques and visualisation tools are proposed. Trend analysis is aimed at

investigating temporal changes that occur in collections of frequent pattern trends. In

the work described in this thesis, prediction modeling is proposed. The next chapter in-

troduces the modules for the Frequent Pattern Trend Analysis element of the proposed

framework.

41



Chapter 3

Social Network Datasets

This chapter describes the “social network” datasets used for evaluating the algorithms

in this thesis. The datasets were extracted from: (i) the GB cattle movement database

(ii) an insurance company (Deeside Insurance Ltd) customer database describing re-

quests for insurance quotes and (iii) the Malaysian Armed Forces logistic cargo distri-

bution database. These datasets are exemplars of business community social networks

representing the entities that form part of the organisations communities and the traf-

fic/communication between these entities. As noted in Chapter 2, in this thesis, the

definition of the term “social network” is extended beyond the “tight” definition used

by some authors, namely that social networks represent user of Internet sites such

as Facebook and LinkedIn and the communication between those users. This thesis

takes a much wider view that social networks may include business communities, file

sharing systems, co-authoring frameworks and so on. The selected datasets consist of

attributes which are viewed as network nodes for example farms, customers and camps;

and movement, communication or traffic between these nodes are treated as the edges

of the networks.

This chapter introduces the three datasets used for the evaluation described in

later chapters. So that the social network datasets can be used with respect to the

systems described in this thesis it was first necessary for them to be preprocessed

and appropriately formatted. This chapter thus also explains the discretisation and

normalisation processes that were applied to the datasets to produce the required binary

valued format.

With respect to the social networks to which the proposed mechanisms may be

applied, two specific “type” of social network can be identified. The generic nature of

these networks is presented (in a stylized form) by the two “network snap shots” given

in Figures 3.1 and 3.2. With reference to Figure 3.1, the network is characterised by

a single “star shape” with all nodes communicating with one super-node, the author

refers to this type of network as a star network. Note that, as shown in the figures,

not all network nodes will be necessarily communicating (linking) with the super-node
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at any given time stamp. The generic network snap shot given in Figure 3.2 is a more

complex version of that given in Figure 3.1, and in this thesis it is referred as a complex

star network. The network is characterised by a number of disconnected “star” sub-

networks of varying size. Again, not all network nodes (with respect to the snap-shot

time stamp) are necessarily communicating (linking) with any of the other nodes. Note

also that, some of the “star” sub-networks comprise only two nodes.

Figure 3.1: (Styalised) Simple Star Network
Figure 3.2: (Stylaised) Complex Star Net-
work

The rest of this chapter is organised as follows. Section 3.1 describes the GB

cattle movement dataset, Section 3.2 the insurance quotation dataset and Section 3.3

logistic cargo distribution dataset. The discretisation and normalisation process is then

presented in Section 3.4, where the data schema for the pre-processed datasets is also

explained. Lastly, Section 3.5 briefly summarizes this chapter.

3.1 GB Cattle Movement Database

The GB cattle movement Cattle Tracing System (CTS) database records all the move-

ments of cattle registered within or imported into Great Britain. The database is main-

tained by the Department for Environment, Food and Rural Affairs (DEFRA). Cattle

movements can be “one-of” movements to final destinations, or movements between

intermediate locations. Movement types include: (i) cattle imports, (ii) movements be-

tween locations, (iii) “movements” in terms of births and (iv) “movements” in terms of

deaths. The CTS was introduced in September 1998, and updated in 2001 to support

disease control activities. Currently (2012), the CTS database holds some 155 Gb of

data.

The CTS database comprises a number of tables, the most significant of which are

the animal, location and movement tables. For the analysis reported in the thesis,

the data from 2003 to 2006 was extracted to form 4 episodes, each comprising 12

(one month time stamps), presented as a sequence of 48 “complex” networks. The

data was stored in a single data warehouse such that each record represented a single
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cattle movement instance associated with a particular year (episode) and month (time

stamp). The number of CTS records represented in each episode was about 400,000.

Each record in the warehouse comprised: (i) a time stamp (month and year), (ii) the

number of cattle moved, (iii) the breed, (iv) the senders location in terms of easting

and northing grid values, (v) the “type” of the sender’s location, (vi) the receivers

location in terms of easting and northing grid values, (vii) the “type” of the receiver’s

location, and (viii) the senders’ and receivers’ Parish Testing Interval (PTI)1. If two

different breeds of cattle were moved at the same time from the same sender location

to the same receiver location, this would generate two records in the warehouse. The

maximum number of cattle moved of the same breed between any pair of locations for a

single time stamp was approximately 40 animals. The spatial magnitude of movement

between farms or animal holding areas can be derived from the location grid values.

The easting and northing values of sender and receiver locations were divided into k

kilometer sub-ranges to produce k sized grid squares Experiments using k = 50 and

k = 100 were conducted; these are described in Chapter 5. The effect of this ranging

was to sub-divide the geographic area covered by the CTS database into a k × k grid.

These grid squares were given unique ID numbers which were also recorded in the

dataset.

3.2 Deeside Insurance Database

The Deeside Insurance quotation dataset (provided by Deeside Insurance Ltd, Deeside,

UK) was extracted from a sample of records taken from the customer database operated

by Deeside Insurance Ltd. Twenty-four months of data were obtained comprising, on

average, 400 records per month. The data was processed to produce a sequence of

24 networks, one per month; divided into two episodes comprising 12 months each,

2008 and 2009. Each record consisted of 13 attributes: (i) Aggregator ID2, (ii) year

of insurance contract, (iii) customer gender, (iv) make of car, (v) car engine size, (vi)

year of manufactured, (vii) customer postcode, (viii) driver age (ix) conviction code,

(x) conviction code number (xi) length of disqualification, (xii) fault and (xiii) penalty

(note that the value for some of the attributes may be null). The data can be viewed

as representing a simple “star” network with Deeside Insurance at the center as a super

node and all other nodes radiating out from it. The first three digits of the customer

postcodes were used to represent geographical locations (the outlying nodes in the

star network). The links were labeled with the number of requests for insurance quotes

originating from a given geographic location. Each month comprises about 800 records.

1PTI is the default frequency for routine TB testing for all cattle herds situated in a parish (a GB
geographic unit historically marking out the jurisdiction of a single priest, but frequently used for local
government purposes). The PTI will vary from parish to parish accosting to circumstance.

2An aggregator is a web application or search facility that allows users to obtain and compare a
number of item quotes/prices.
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A total of 24 networks were extracted, one for each month covering the period 2008 to

2009.

3.3 Malaysian Armed Forces (MAF) Logistic Cargo Dis-
tribution Database

The Logistic Cargo Distribution dataset describes the shipment of logistics items for

the Malaysian Army, Air Force and Navy. The logistic items include vehicle, medicines,

military uniforms, ammunition and repair parts. The dataset was extracted from the

records for 2008 to 2009 to form 2 episodes with 12 time stamps each, thus a total of 24

networks. As in the case of CTS database the extracted data network also described a

complex star network as it comprised many simple star networks. Items are sent from

a number of division logistic headquarters to brigades and then to specific battalions in

West and East Malaysia. The location of headquarters, brigades and battalions are the

spatial attributes of the dataset. These offices are viewed as being sender and receiver

nodes (in a similar manner as described for the CTS dataset) and the shipments as

links connecting nodes in the network. Each month consists of some 100 records. Each

extracted record has 7 attributes: (i) time stamp (month), (ii) logistic item, (iii) sender,

(iv) sender city, (v) receiver, (vi) receiver city, and (vii) shipment cost.

3.4 Discretisation and Normalisation

Discretisation and normalisation processes were used to covert input data, presented

in some non-binary format, into the binary valued format. This was necessary because

the data mining techniques to be used, for FPM, will only operate with binary valued

data (0-1 data). Discretisation converts the original dataset attributes with continu-

ous data values into {1 . . . N} sub-ranges such that each sub-range is identified by a

unique integer label. Normalisation converts data attributes with nominal values into

unique integer labels/columns. For the experiments in this research, the attributes

with continuous data types were divided into 10 sub-ranges and the attributes with

integer data types were divided into 5 sub-ranges. Thus, the data format conversion

maintains the nature of the data while at the same time permitting the application of

FPM algorithms.

Table 3.1 presents an example database schema. In the example the data attributes

are discretised and normalised according to their data types. The example considers a

dataset comprising three attributes: (i) easting, (ii) number of cattle moved and (iii)

gender. The first two are continuous attributes while the third is a nominal attribute.

In this case, after the discretisation and normalisation process, the datasets will have

been divided into 17 “column” attributes: (i) 10 columns ({1 . . . 10}) representing the

easting values, (ii) 5 columns ({11 . . . 15}) representing the number of cattle moved
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Attribute data type Attribute Range.

Continuous (double) Easting The values can be 0− 100, 000 thus
it can be divided into 10 sub-ranges,
0.0 ≤ n ≤ 100, 000.0, 100, 000.0 ≤
n ≤ 200, 000.0, 200, 000.0 ≤ n ≤
300, 000.0 . . . n ≥ 1, 000, 000.0

Integer Number of cattle moved The values can be divided into
five sub-ranges, 0<n<5, 5<n<10,
10<n<20, 20<n<30 and n>30

Nominal Gender The values are converted into male
= 1 and female = 2

Table 3.1: Examples of discretisation and normalisation of data attributes

and (iii) 2 columns ({16 . . . 17}) representing the two possible values for the gender

attribute.

Figures 3.3, 3.4 and 3.5 summarise the discretisation and normalisation conducted

with respect to the identified datasets. In each figure the original attributes are pre-

sented on the left and the derived attributes on the right. As a result, the CTS dataset

has 445 attributes, the Deeside Insurance quotation dataset has 314 attributes and

MAF Logistic Cargo dataset has 201 attributes.

Labels/columns Data

1-3 Cattle gender type

4-8 Cattle age sub-ranges

9-194 cattle breed type

195-198 Breed type

199-299

Sub-ranges Sender holding 

square area on the UK map 

grid

300-314
Sender holding area location 

types

315-415

Sub-ranges Receiver 

holding square area on the 

UK map grid

416-430
Receiver holding area 

location types

431-435 Sender PTI

436-440 Receiver PTI

441-445
number of cattle moved from 

each movement

Cattle gender

Cattle age

Breed

Breed type

Sender holding area

Sender location type

Receiver holding area

Receiver location type

Sender PTI

Receiver PTI

Num_cattle_moved

Original CTS attributes

Discretisation

Normalisation

Figure 3.3: Discretisation and normalisation CTS attributes
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Labels/columns Data

1-90 Aggregator

91-93 Customer gender

94-98 Engine Size

99-142 Car Make

143-147 Year of Manufactured

148-269 Postcode area

270-274 Postcode district

275-279 Postcode sector

280-284 Driver age

285-295 Conviction code

296-300 Conviction code number

301-305 Length of disqualification

306-309 Fault

310-314 Penalty

Discretisation

Normalisation

Deeside insurance attributes

Aggregator

Customer gender

Engine Size

Car make

Year of Manufactured

Customer postcode

Driver Age

Conviction code

Conviction code number

Length of disqualification

Fault

Penalty

Figure 3.4: Discretisation and normalisation Deeside Insurance quotation attributes

3.5 Summary

This chapter has described the datasets used for evaluating the proposed Frequent

Pattern Trend Analysis and Prediction Modeling. Three datasets were selected for the

evaluation: (i) the CTS database, (ii) the Deeside Insurance quotation database, and

(iii) the MAF Logistic Cargo distribution database. An appropriate social network

dataset was extracted from each of these encompassing a sequence of time stamps and

episodes. In each case the dataset attributes were discretised and normalised to form a

{1 . . . N} label/column binary valued dataset. The next chapter describes the proposed

Frequent Pattern Trend Analysis mechanisms.
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Labels/columns Data

1-35 List of logistic items

36-61

Sender: division 

and brigade logistic 

offices

62-87
Sender offices’ 

cities

88-162
Receiver: brigade 

and battalions

163-190 Receivers’ cities

191-201
Sub-ranges of 

shipment costs

Discretisation

Normalisation

Logistic Cargo Attributes

Logistic item

Sender

Sender city

Receiver

Receiver city

Shipment cost

Figure 3.5: Discretisation and normalisation MAF Logistic Cargo distribution at-
tributes
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Chapter 4

The Frequent Pattern Trend
Analysis

As noted in Chapter 1 the motivation for the research described in this thesis is the

requirement for techniques and mechanisms to support the identification and analysis

of trend information contained in network data so as to provide support for decision

and policy makers. The objective is to investigate and evaluate mechanisms to identify

dynamic changes in network data which, in turn, can be used to direct actions. This

chapter describes the first part of the proposed Predictive Trend Mining Framework

(PTMF), comprising the Frequent Pattern Trend Analysis (FPTA) modules, to support

the analysis of temporal frequent patterns and trends in the context of Social Networks.

The FPTA modules were designed to identify frequent patterns from a sequence of time

stamped datasets so that the sequence of frequency counts (support values) associated

with a particular pattern described a “trend line”. As such the modules provide support

for the analysis of time stamped datasets where the data is organised into episodes

(each episode described by a sequence of time stamps). Referring back to the research

objectives (Section 1.2) the proposed modules in this chapter are intended to provide

effective mechanisms to: (i) discover temporal frequent patterns and trends in network

data, and (ii) facilitate the analysis of these trends and patterns so as to identify

behaviours that might exist across networks.

The FPTA element of PTMF comprises four modules: (i) Trend Identification,

(ii) Trend Grouping, (iii) Pattern Migration Clustering and (iv) Pattern Migration

Visualization. The Trend Identification module is used to identify a set of temporal

patterns (trend lines) describing the fluctuating levels of support for individual patterns.

The Trend Grouping module is then used to group the discovered trends using a Self

Organising Map (SOM) [73]. The Pattern Migration Clustering module may be applied

to identify how particular patterns “migrate” (or do not migrate) from one SOM node

to another over one or more successive SOM maps. The Pattern Migration Clustering

module is also used to cluster the identified pattern migrations, the idea here is that

such migrations may provide interesting information in terms of temporal changes and
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communities of migrating patterns. To support end user interpretation of the output,

the Pattern Migration Visualisation module provides a graphical representation of the

migration results.

The rest of this chapter is organized as follows. Firstly, Section 4.1 presents a for-

mal definition of the frequent trend mining problem as conceptualized with respect to

this thesis. Section 4.2 introduces the FPTA modules in more detail. Each of the four

modules is then described in the following four sections. Section 4.3 considers the al-

gorithm for generating temporal patterns and trends. Section 4.4 discusses the process

for grouping trends to discover “types” of trends; followed, in Section 4.5, by a descrip-

tion of the proposed technique for detecting pattern migrations and “communities”

of migrating patterns. Section 4.6 then discusses the Pattern Migration Visualisation

module. In each of these sections pseudo code is included (where appropriate) so as

to explain the operation of each module. A discussion and some assumptions applied

during the development of the modules are considered in Section 4.7. Finally, in Section

4.8, the chapter is concluded with a brief summary.

4.1 Formalism and Definitions

The input to the FPTA modules comprises a sequence of n time stamped datasets,

D = {d1, d2, . . . dn}. To identify changes in trends (or lack of them), the available time

stamps were subdivided into e episodes, each of equal length m, thus n = e×m. The

size of m, and hence the number of episodes e, will be application dependent. However,

with respect to the selected datasets, a granularity of one month was used for the time

stamps and hence m was set to 12; consequently each episode represented a year (for

example, the GB cattle movement data was divided into four episodes: 2003, 2004,

2005 and 2006).

Each dataset comprises a binary valued table such that each record represents the

traffic between a social network node pair in a given network. The level of detail

provided will vary between applications; nodes may be described in terms of a sin-

gle attribute or a number of attributes. Nodes may include information about the

entity they represent, such as location information (for example post codes, or east-

ings and northings) and/or the nature of the attribute. For the GB cattle movement

dataset, a number of node attributes were identified, such as: node type (farms, mar-

kets, abattoirs, etc.), address and location grid coordinates (eastings and northings).

The quantity of traffic was defined in terms of a sequence of ranges. Additional traffic

information may also be provided, for example in the case of the GB cattle movement

application information concerning the nature of the cattle moved is included (breed

type, gender, etc.). Thus, each record, in each dataset di is comprised of a subset of

binary valued attributes taken from a global set of attributes A = {a1, a2, . . . am}. Note

that the number of records in each dataset need not be constant across the collection.
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As already noted, in this thesis, a trend line t associated with a pattern I is defined

in terms of the frequency of occurrence of I within D, over the sequence of time stamps

within an episode. Thus, a trend line t, for a particular pattern I, comprises a set

of values tI = {vv, v2, . . . vm} where each value represents an occurrence count of the

pattern at a particular time stamp within an episode of length m. The collection of

trend lines for a pattern I, TI , is then comprised of a sequence of trend lines (one per

episode) {tI1 , tI2 , . . . tIe} (where e is the number of episodes).

The entire collection of trends within a system is given by τ . The trend lines

associated with a time stamp i is given by τi. Thus τ = {τ1, τ2, . . . , τn}. The entire

collection of trends associated with a particular episode i is given by τei. Thus T =

{τe1, τe2, . . . , τee}. The trend lines associated with a specific episode ei are given by

τei = {τk, τk+1, . . . , τk+m}, where k is the first time stamp in the episode ei.

4.2 Frequent Pattern Trend Analysis Modules

As noted above the proposed FPTA process involves four modules:

1. Trend Identification: The trend identification module comprises the mining

unit for identifying and generating the frequent patterns and trends from the raw

data.

2. Trend Grouping: The trend grouping module groups similar trends, using SOM

technology, into trend clusters (each represented by a SOM node) one SOM per

episode. Note that each cluster (SOM node) maintains the details of the frequent

patterns that it represents.

3. Pattern Migration Clustering: The pattern migration clustering module

groups pattern that migrate across the SOM network in a similar way. The aim

is to identify “communities” whose associated trends change in a similar manner

(or do not change) between episodes.

4. Pattern Migration Visualisation: The pattern migration visualization mod-

ule incorporates a tool to illustrate the migration activities between trend clusters

(SOM nodes) identified in module 3.

The FPTA process is shown in diagrammatic form in Figure 4.1. The process com-

mences in the top-left corner of the figure with the data (a collection of networks).

The input data is then processed, using the four modules, to identify and analyse the

frequent patterns and trends, and give the final visualization (bottom-left corner of the

figure). Each module is described in further detail in the following sub-sections; pseudo

code and worked examples are included where appropriate. The nature of the software

associated with each module is indicated (in Figure 4.1) in parenthesis.
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Figure 4.1: Schematic illustrating the operation of the FPTA

4.3 Trend Identification

As already noted the patterns of interest are frequent itemsets as popularised in Asso-

ciation Rule Mining [7]. To mine patterns and trends an extended version of the Total

From Partial (TFP) algorithm [29, 30], described in Section 2.2.2, was incorporated into

the Trend Identification module. TFP was selected because it is an established frequent

pattern mining algorithm that has been shown to be efficient. An alternative might

have been FP-growth [50] which was described in Section 2.2.2. As noted in Chapter

2, TFP is distinguished by its use of two data structures: (i) a P-tree used to both

encapsulate the input data and record a partial frequency count for each pattern, and

(ii) a T-tree to store the identified patterns together with their total frequency counts.

Recall that the T-tree is essentially a reverse set enumeration tree that allows fast look

up. Recall also that the T-tree comprises an array and node structure, each level in

the T-tree is represented by an array (array indexes indicate item identifies) comprised

of pointers (references) to node objects. The TFP algorithm follows an apriori style of

operation to generate frequent items sets whereby the antimonotone property of item

sets is used to limit the search space. The well documented support framework is used,

whereby a frequency count threshold (the support threshold) is used to define “inter-

esting” patterns; typically the lower the support threshold the more patterns that are
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discovered.

The TFP algorithm, in its original form, was not designed to address the temporal

aspect of frequent pattern mining. For the purpose of the FPTA process, the TFP

algorithm was therefore modified and extended so that sequences of datasets could be

processed, and the discovered frequent patterns stored, in a way that would allow for

differentiation between individual time stamps and episodes. The resulting algorithm

was called TM-TFP (Trend Mining-TFP) which incorporated a TM-tree to store the

desired patterns. Further details concerning the TM-TFP algorithm, will be described

in the following sub-section (note that similar descriptions have been published pre-

viously by the author in [96] and [97]). The output from the TM-TFP algorithm is

the desired collection of trends T = {T1, T2, . . . , Te}. Experiments using a variety of

network datasets (reported in [95]) have indicated that a large number of trends are

often identified. More details concerning these experiments are presented in the Chap-

ter 5. Of course, the number of patterns to be considered can be reduced by using

a higher support threshold, but the established argument against this expedient is

that potential interesting patterns may be overlooked. In situations where a pattern is

sometimes frequent (above or equal to the support threshold) and sometimes infrequent

(below the support threshold), a value of 0 is recorded where the support count falls

below the threshold. It can be argued that where itemsets are sometimes frequent and

sometimes not frequent the support count should always be recorded, however this was

found to introduce an unacceptable computational overhead. The author did conduct

some experiments using a negative border, as advocated in [120], however this still re-

sulted in some frequent sets falling below the negative border threshold. Therefore the

straightforward expedient of using relatively low support thresholds and ignoring the

frequency counts for infrequent patterns (replacing it with a count of 0) was adopted.

Note also that where a pattern is not supported with respect to an episode, no trend

line is generated even if the pattern is supported in some other episode.

4.3.1 Trend Mining-TFP Algorithm

In this sub-section the TM-TFP algorithm, which is directed at identifying sequences of

frequent patterns (itemsets) within time stamped data is described. TM-TFP utilizes

the T-tree and P-tree data structures for storing and indexing the itemsets. In Chapter

2, an example was given of how patterns and support values are stored using P-trees and

T-trees. The TM-TFP algorithm is founded on the TFP algorithm. The distinction

between TFP and TM-TFP is that the latter uses an additional TM-tree to integrate

T-trees associated with individual time stamps. The TM-tree has a similar structure to

T-trees. Each node in a TM-tree has two fields: (i) trend and (ii) reference. The first

field consists of a vector of support values that describes the associated trend line. The

second holds a reference (pointer) to the next level of the TM-tree. As in the case of the
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T-tree, the individual items making up a frequent pattern are not explicitly stored as

this can be obtained simply from the tree structure. The TM-tree also has a TM-tree

header which holds references to a set of n T-trees (recall that n is the number of time

stamps in a given system). Figure 4.2 shows the structure of the TM-tree. For ease of

reading the TM-Tree presented in the figure only holds trends of length two [vni , vnj ].

T1 T2 … … … … … … … Tn

TM-tree Header

T-tree1

T-tree2

T-treen

Each node holds  
itemset and 

support count 
information

Figure 4.2: Structure of TM-tree
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Algorithm 4.1: TM-TFP algorithm for building TM-tree

input : A set of n datasets, D = {d1, d2, . . . dn}, minSupport
output: TM-tree holding frequent itemsets’ trends in D

// Initialise TM-Tree header file

1 TM-tree Header size ← n;
2 for i← 0 to (n-1) do
3 Create P-treei from di;
4 Create T-treei, using minSupport;
5 TM-tree Header [i] ← T-treei reference;

6 end
7 buildTM Ttree() // Algortihm 4.2

An overview of the operation of the TM-TFP algorithm is given by the pseudo

code presented in Algorithm 4.1. The algorithm commences by initialising the TM-

tree header according to the number of time stamped datasets held in D (line 1).

Then, lines 2 to 5, it loops through the datasets d1 to dn contained in D and creates

individual P-trees and T-trees, one per dataset di, using the TFP algorithm. Note that

a reference to each generated T-tree is stored in the TM-tree header (line 5). Finally,

line 7, the buildTM Ttree() method is called to process the collection of T-trees built

from {d1, d2, . . . dn}, and construct the desired TM-tree.

Algorithm 4.2: buildTM Ttree()

input : A set of n T-trees
output: TM-tree holding frequent itemsets in D
// builds TM-tree by processing a collection of T-trees built for

Dn

1 Initialise TM-tree to accommodate all T-trees from 0 to n− 1;
2 for i← 0 to (n-1) do
3 if T-treei 6= ∅ then
4 buildTM Ttree (T-treei,i) // Algorithm 4.3
5 end

6 end

Algorithm 4.2 describes the buildTM Ttree() method. The algorithm commences

(line 1) by determining the total number of frequent itemsets that are required to be

held in the TM-trees. The TM-tree is then initialised using this number so that it

can hold all combinations of frequent itemsets and trends contained in the n T-trees.

The TM-tree is then constructed (line 2 to 4) by repeated calls to the buildTM Ttree

method. The pseudo code for this method is presented in Algorithm 4.3. The input

to this algorithm is the current T-tree, T-treei, and the current time stamp i. Note

that on line 2 of Algorithm 4.2 there is a test for the empty T-tree situation (which

may exist if a very high support threshold is used). If the input T-tree is not empty

Algorithm 4.3 proceeds by processing the top level of the given T-tree (T-Treei). For

each element in this top level, T-treei[k], if the element is not empty the algorithm calls
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(line 3) the addToTMtree method (Algorithm 4.5) with the associated support. If the

T-treei[k] has child nodes, these are then processed (Algorithm 4.4). If the element

is empty (not supported) the algorithm calls (line 8) the addToTMtree method with a

support value of 0.

Algorithm 4.3: buildTM Ttree(T-treei,i)

input : T-treei, time stamp i
output: TM-tree holding frequent itemsets in D
// loop through top level of current T-tree

1 for k ← 1 to numOfoneItemsets do
2 if T-treei[k] 6= ∅ then
3 addToTMtree (T-treei[k].support, i) // Algorithm 4.5

// move down a level

4 if T-treei[k] has child node then
5 buildTM Ttree (T-treei[k].child, i,k-1) // Algorithm 4.4
6 end

7 else
8 addToTMtree (0, i)
9 end

10 end

Algorithm 4.4: buildTM Ttree(T-treei,i,size)

input : T − treei, time stamp i, size
output: TM-tree holding frequent itemsets in D

1 for k ← 1 to size (of current node level of the current T-tree) do
2 if T-treei[k] 6= ∅ then
3 addToTMtree (T-treei[k].support, i) // Algorithm 4.5

// move down a level

4 if T-treei[k] has child node then
5 buildTM Ttree (T-treei[k].child,i,k-1) // Algorithm 4.4
6 end

7 else
8 addToTMtree (0, i)
9 end

10 end

Algorithm 4.4 processes the child nodes of a given T-treei. The size parameter is

the number of elements at the current node in the current branch of the given T-tree.

The algorithm loops through the elements in the current level of the tree (line 1). If

the node represented by an element is not empty (i.e. it represents a supported item)

the equivalent node in the TM tree is updated with the support count (Algorithm 4.5).

In line 4 the algorithm tests whether the current node (element) has a child branch

associated with it. If so this next level is processed by a repeat call to Algorithm

4.4, and so on until there are no more child branches to be processed. The process of
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building the TM-tree continues in this manner until all T-trees have been considered.

Line 8 deals with the situation when a T-tree level element is not supported, in this

case a call is made to the addToTMtree method with a support value of 0.

Algorithm 4.5: addToTMtree(support, i)

input : support, timestamp i
output: TM-tree updated with itemset support

1 TM-tree.trend[i] = T-treei.support;
2 return;

Algorithm 4.5 adds the support value of an itemset in a given T-treei to the TM-

tree. If the given T-treei element (node) representing the itemset is empty (the itemset

is not supported) the support value will be 0. Recall that zero is used as a flag to

indicate that an itemset is not supported. Whatever the case the added support for

the itemset will form part of the eventual trend line, stored at the TM-tree node, for

the itemset.

Figure 4.3 presents a worked example of the building of a TM-tree. Let d1 =

{ab, acd, ab} and d2 = {bd, cd, abd}, the TM-TFP algorithm starts by creating P-tree1

and T-tree1 for d1, followed by P-tree2 and T-tree2 for d2. Each T-tree is linked to

the TM-tree header. Subsequently, the algorithm scans through T-tree1 and T-tree2 to

build the TM-tree with a collection support values from both T-trees to form trends.

A representation of the content of part of a TM-tree is given in Figure 4.4 (generated

using an output facility included in the TM-TFP algorithm for diagnostic purposes).

From the figure it can be seen that a TM-tree node holds three pieces of information:

(i) the itemset identifier (held implicitly), (ii) a trend represented by a set of support

counts and (iii) a reference to the next level in the TM-tree.

Table 4.1 presents the number of patterns discovered from the GB cattle movement

dataset using three different support thresholds (the first column gives the episode

identifier). The table serves to demonstrate that a large number of trends are discovered

using TM-TFP. This was one of motivations for the inclusion of the Trend Grouping

module into the process of FPTA. The trend grouping module was also motivated by a

desire to formulate a mechanism to support the analysis of the discovered trends. The

module is discussed further in the following sub-section.

4.4 Trend Grouping

As indicated in Table 4.1, and as noted at the end of the previous section, a large

number of trends are typically identified using TM-TFP. A proposed mechanism, to

support the desired trend analysis, incorporated into the process of FPTA, is to group

the discovered trends according to their distinguishing features (increasing, decreasing,

steady and so on). This section begins, Sub-section 4.4.1, by describing the proposed
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Figure 4.3: A worked example of the operation of the TM-TFP Algorithm

process. The process starts by grouping similar trends using a SOM. The intuition here

was that end users were expected to be interested in particular types of trends. Using

a SOM, similar trends can be clustered at particular nodes in a SOM map. A separate

SOM map can be generated for each episode, and thus the maps can be viewed in terms

of a sequence of maps (with respect to the applications used to evaluate the proposed

FPTA modules each map represented a year of activity). Prior to starting the SOM

process the SOM map must be initialized. A discussion on the optimum size for a SOM

map is therefore presented in Sub-section 4.4.2.
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[“N”] the id 
of a node in 
the TM-tree

<ITEM_SET> an identifier 
for the frequent patterns 

discovered in data episode 
(e) 

<SUPPORT_ARRAY> a list 
of support values 
describing a trend

Figure 4.4: An example of the diagnostic output from the TM-TFP algorithm com-
prising a list of frequent patterns and 12 months of trend values

Episode Support Threshold
(year) 0.5% 0.8% 1.00%

2003 63,117 34,858 25,738
2004 66,870 36,489 27,055
2005 65,154 35,626 25,954
2006 62,713 33,795 24,740

Table 4.1: Number of trends identified using TM-TFP for a sequence of four GB Cattle
Movement network episodes and a range of support thresholds

4.4.1 Trend Clustering using Self Organizing Maps

To group the trends one SOM was created per data episode. SOMs [73] may be viewed

as a type of feed-forward, back propagation, neural network that comprises an input

layer and an output layer (an i × j grid). The cells in the i × j grid are referred to

as nodes; each node potentially represents a trend cluster (a grouping of trends that

display similar geometry). Recall that in the work described in this thesis, the input

layer comprises the trends (trend lines formed of n support counts associated with each

frequent pattern) and the output layer the trend clusters. Each output node (map

node) in the output layer is connected to every input node in the input layer, a trend
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line, which is assigned a set of weight vectors, w. The dimension of the weight vectors

is the same as the dimension of the trend lines of interest, for example in this thesis

trend lines are of length 12 (months). The SOM was then “trained” using a training

input dataset. Algorithm 4.6 provides the trend grouping pseudo code for clustering

the trend lines generated using TM-TFP. With reference to this pseudo code the SOM

is first initialised (line 1) with a predefined x × y grid (map). A discussion on the

optimum size of a grid/map is presented in Sub-section 4.4.2 below.

Algorithm 4.6: Trend Grouping using SOM

input : T = {τe1, τe2, . . . , τee}
output: SOM prototype map and n trend line maps
// generate a SOM prototype map

1 Initialise a SOM prototype map with x× y nodes;
2 Assign weight vectors, w, to the map nodes;
3 for i← 0 to |τe1 | do
4 Find the “winning” node for trend line t1i in the prototype map;
5 Adjust the weight vectors of nearby map nodes accordingly;

6 end
// generate a SOM trend line maps

7 for k ← 0 to e do
8 Initialise a SOM trend line map, with x× y nodes for episode k;
9 for i← 0 to |τek | do

10 Plot tki onto the prototype map for episode k;
11 end

12 end

The SOM was thus trained using the trend lines associated with the frequent pat-

terns discovered in the first data episode (e1) (line 3 to 5). Each record in τe1 (defined

in Section 4.1) was presented to the SOM in turn. The output nodes then “compete”

for each record. Once a record has been assigned to the “winning” map node, the

network’s weightings are adjusted to reflect this new position. At first the adjustments

are relatively large, but as the training continues the adjustments become smaller and

smaller. A distance function1 and a neighbourhood function2 were used to determine

similarity. A feature of the adjustment was that adjacent nodes would come to hold

similar records; the greatest dissimilarity would be between nodes at opposite corners

of the map. At the end of the SOM training phase, a prototype map was produced that

represented the types of trend lines that existed within the set of identified trend lines

in τe1. Copies of the resulting prototype map were then populated with data from all

e episodes (τe1 to τee), to produce a sequence of e maps M = {M1,M2, . . . ,Me} (line

8 to 12). Using this SOM based clustering process the substantial number of trends

that are typically identified using TM-TFP could be grouped according to their trend

1A Euclidean function was adopted with respect to the work described in this thesis.
2Gaussian function was used to determine the neighbourhood size of the map.
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“types” so as to consequently aid analysis. Figure 4.5 illustrates the process. The figure

features four episodes which are used to generate four SOM maps (labeled I, II, II, IV)

based on the prototype map.

Trend  Grouping SOM

Frequent patterns 
and trends from 

FPTM

I

II

III

IV

Prototype Map

Trend line Maps

Figure 4.5: SOM Prototype and Trend lines maps

The author experimented with a number of different mechanisms for training the

SOM, including: (i) devising specific trends to be represented by individual nodes, (ii)

generating a collection of all the mathematically possible trends and training the SOM

using this set, and (iii) using some or all of the trends in the first epoch to be considered.

The first required prior knowledge of the trend configurations of interest; which, it was

conjectured, tended to defeat the objective of the trend mining process. The second

mechanism, it was discovered, resulted in maps for which the majority of nodes were

empty. The third option was therefore adopted. The third mechanism also supported

the idea of identifying changes in trends associated with particular frequent patterns

between episodes.

4.4.2 Discussion on SOM node configuration

As noted in Chapter 2, it is difficult to predefine the optimal number of SOM map

clusters. A set of experiments was conducted to determine the most appropriate con-

figuration of SOM nodes. The experiments were conducted using the GB cattle move-

ment data since it features the largest collection of patterns and trends when compared
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to Deeside Insurance Quote and Malaysian Armed Forces Logistic Cargo networks. A

very large grid size would allow for the grouping of trend lines into a greater number

(possibly more accurate) map nodes (clusters), however this would also result in an

undesirable computational overhead and in many cases might not serve to resolve the

situation as many of the map nodes may remain empty (i.e. the items are consistently

held in a small number of map nodes such that increasing the size of i and j has lit-

tle or no effect). Figures 4.6, 4.7 and 4.8 present prototype maps of the 2003 cattle

movement dataset using three sizes of map 7 × 7, 10 × 10 and 12 × 12 respectively.

Inspection of these prototype maps indicates that each produced similar trend clusters

or sub-clusters however it is apparent that the bigger map sizes features a distribution

of the data that is more “distinct” or “finer”. The trend line maps shown in Figure 4.9,

4.10 and 4.11, which were generated using the prototype maps in Figures 4.6, 4.7 and

4.8 respectively, demonstrate that the larger the SOM grid, the greater the possibility

of having empty map nodes. There are no empty map nodes in the SOM given in

Figure 4.9. In Figure 4.10, there is one empty map node, node 92. In Figure 4.11 there

are four empty map nodes, nodes 121, 122, 134 and 143. Thus, in the case of the GB

cattle movement (network) a 10×10 node SOM was considered to be the most effective

as this gave a good decomposition while still ensuring computational tractability. For

the insurance quotation and logistic cargo distribution datasets, a 7×7 node SOM was

found to be more suitable.

4.5 Pattern Migration Clustering

The third module in the proposed FTPA process provides for further analysis of the

patterns and trends contained in the generated SOMs (one per episode) with respect to

the concept of pattern migration. The motivation here was that, at least in the context

of the networks used for evaluation purposes in this thesis, discussion with potential end

users indicated that they would be interested in how trends associated with particular

patterns changed over time. In other words, in the context of the SOM maps, how

the trend lines associated with particular patterns migrate (or did not migrate) across

a sequence of maps. For this purpose each sequential pair of SOM maps was used

to construct a second migration network/map comprising, i× j nodes and potentially

(i× j)2 links (including “self links”).

Given two SOM maps Me and Me+1, the from map and the to map respectively,

the nodes in a migration network were labeled with the number of patterns held in

the node in map Me (i.e. the from map). The links then represented the migration of

patterns from Me to Me+1, and were labeled with the number of migrating patterns

(thus a “traffic” value). The higher the value the stronger the link. The process

of visualising such migration networks is discussed in the following sections (Section

4.6). The remainder of this section is organised as follows. Sub-section 4.5.1 describes
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the process of detecting migrations of frequent patterns between two SOM maps Me

and Me+1. This is followed in Sub-section 4.5.2 by a description of the clustering

of the identified pattern migrations; a hierarchical clustering method is suggested. A

worked example of the clustering of the identified pattern migrations, using the Newman

method, is shown in Sub-section 4.5.3.

4.5.1 Pattern Migration

The changes in trends associated with patterns can be measured by interpreting the

SOM trend line maps in terms of a rectangular (2-D plane) where each point in the

plane represents a SOM node. A Manhattan or Euclidean distance function can then

be applied to determine the distance “traveled” by the patterns between nodes in suc-

cessive SOM maps, which in turn can be used to observe the similarities and differences

between pattern trends across episodes. The greater the distance a pattern moves the

more significant the change. Thus, given a sequence of trend line SOM maps, com-

parisons can be made to see how trends associated with individual frequent patterns

change by analyzing the nodes in which they appear. The trend cluster analysis pseudo

code is described in Algorithm 4.7.

Algorithm 4.7: Trend Cluster Analysis

input : FP = Set of all frequent patterns in episodes {e1, e2 . . . , ee}
output: Sequence of (e− 1) Migration Matrices

1 Define Table measuring | FP | ×e;
2 for i← 1 to e (step through episodes) do
3 for j ← 1 to | FP |(step through the set of FP) do
4 Table[i][j] = Table[i][j] ∪ SOM node ID for ei;
5 end

6 end
7 Define (e− 1) Migration Matrices (MMs), each measuring (x× x) where x is the

number of SOM nodes;
8 for i← 1 to (e− 1) do
9 for k ← 1 to | FP | do

10 Increment count at MMi[Table[K][i]][Table[K][i+1]];
11 end

12 end

The algorithm commences by defining a |FP |×e table. The table is populated with

the SOM node IDs, the frequent pattern trend cluster, for each discovered frequent

pattern in {e1, e2, . . . , ee} for SOM maps M = {M1,M2, . . . ,Me} (line 4). Then in line

7, the algorithm defines a sequence of e − 1 Migration Matrices (MMs) for each pair

of SOM Me and Me+1, each measuring x × x. The process continues by comparing

the node numbers of the frequent pattern and counting the pattern migrations for each

node ID (trend cluster) between SOM Me and Me+1 (lines 8 and 10).
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Subsequently, the module also produces a trend cluster analysis of the pattern

migrations between trend clusters. The analysis comprises a comparison of pattern

migrations for each pair of SOM Me and Me+1. The number of patterns migrating

from nodei in Me to nodej in Me+1 are recorded. It is also possible to determine

how the sizes of trend clusters in a given pair of SOMs, Me and Me+1, change. This

analysis thus provides for identification of patterns that move, or do not move, between

successive SOM nodes, which may be of interest given particular applications.

4.5.2 Pattern Migration Hierarchical Clustering

To aid the further analysis of the identified trend migrations it was also considered

desirable to identify “communities” within networks, i.e. clusters of nodes which were

“strongly” connected (feature significant migration). This would indicate significant

groupings of patterns whose associated trend lines where changing between episodes

ek and ek+1. An agglomerative hierarchical clustering mechanism, founded on the

Newman method [91] for identifying clusters in network data, was therefore adopted.

Newman proceeds in the standard iterative manner on which agglomerative hierarchical

clustering algorithms are founded. The process starts with a number of clusters equiv-

alent to the number of nodes3. The two clusters (nodes) with the greatest “similarity”

are then combined to form a merged cluster. The process continues until a “best”

cluster configuration is arrived at or all nodes are merged into a single cluster. The

overall process is typically conceptualised in the form of a dendrogram. Best similarity

is defined in terms of the Q-value, this is a “modularity” value which is calculated as

follows:

Qi =
i=n∑
i=1

(cii − a2i ) (4.1)

where Qi is the Q-value associated with the current cluster i, n is the total number of

nodes in the network, cii is the fraction of intra-cluster (within cluster) links in cluster i

over the total number of links in the network, and a2i is the fraction of links that end in

the nodes in cluster i if the edges were attached at random. The value ai is calculated

as follows:

ai =
j=n∑
j=1

cji (4.2)

where cij is the fraction of inter-cluster links, between the current cluster i and the

cluster j, over the total number of links in the network.

Thus on each iteration the Q-values for all possible cluster pairings are calculated

and the pairing with the highest Q-value selected for merging. The process proceeds

3The alternative is divisive hierarchical clustering where we start with a single cluster.
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i cii ai a2i Q

A 0.00 0.10 0.01 -0.01
B 0.00 0.10 0.01 -0.01
C 0.00 0.20 0.04 -0.04
D 0.00 0.10 0.01 -0.01

Table 4.2: Start Condition

Groups Internal Links
1 2 3 c11 c22 c33 a1 a2 a3 a21 a22 a23 Q

AB C D 0.40 0.00 0.00 0.40 0.40 0.20 0.16 0.16 0.04 0.04
AC B D 0.00 0.00 0.00 0.60 0.20 0.20 0.36 0.04 0.04 -0.44
AD B C 0.00 0.00 0.00 0.40 0.20 0.40 0.16 0.04 0.16 -0.36
BC A D 0.00 0.20 0.00 0.60 0.20 0.20 0.36 0.04 0.04 -0.24
BD A C 0.00 0.00 0.00 0.40 0.20 0.40 0.16 0.04 0.16 -0.36
CD A B 0.00 0.40 0.00 0.60 0.20 0.20 0.36 0.04 0.04 -0.04

Table 4.3: First Iteration

until a best cluster configuration is achieved. This is defined as the configuration

with the highest overall Q-value. Generally speaking, if the Q-value is above 0.3 then

communities can be said to exist within the target network; the value of 0.3 was derived

experimentally by Newman and Girvan [92]. Note that if all nodes are placed in one

group the Q-value will be 0.0 (i.e. a very poor clustering). A worked example is

presented in the following subsection. The identified clustering (communities) are then

displayed as “islands” in the following stage in the FPTA process. This will be described

in Section 4.6.

4.5.3 Worked Example of Hierarchical Clustering Using Newman

Considering the simple example network presented in Figure 4.12. The Q value for

this network at the start of the process, when each vertex is considered to represent a

group, is (using data from Table 4.2):

Q = −0.01− 0.01− 0.04− 0.01 = −0.07

There are six potential joins AB, AC, AD, BC, BD and CD; giving rise to six

potential configurations. Calculating the Q-value for each configuration (Table 4.3)

gives a best Q-value of 0.04, this therefore represents the first join and the configuration

{AB,C,D} is generated.

For the next join, there are three possible configurations: {ABC,D}, {ABD,C}
and {AB,CD}. Calculating the Q-value for each of these configurations (Table 4.3)

gives a best Q-value of 0.28, so this is the second join and the configuration {AB,CD}
is formed.
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Groups Internal Links
1 2 C11 C22 a1 a2 a21 a22 Q

ABC D 0.60 0.00 0.80 0.20 0.64 0.04 -0.08
ABD C 0.40 0.00 0.60 0.40 0.36 0.16 -0.12
AB CD 0.40 0.40 0.40 0.60 0.16 0.36 0.28

Table 4.4: Second Iteration

For the third iteration the only remaining option is to combine all the vertices, this

will give a Q-value of 0.0. The discovered maximal value for Q is then 0.28 and hence

the configuration associated with this value, {AB,CD}, is selected as the best grouping

(clustering). The dendrogram for the example is given in Figure 4.13.

4.6 Pattern Visualisation and Animation using Visuset

It is often said that SOMs are a visualization technique, reference to Figures 4.9, 4.10

and 4.11 supports this view. However, it was felt that a better form of visualisation

was desirable, especially in the context of the migration maps identified above. The

proposed Pattern Migration Visualisation module provides two forms of visualisation

(founded on the Visuset software system [94]):

1. Visualisation of pattern migrations between two successive SOMs.

2. Animation of the pattern migrations between three successive SOMs.

In each case the visualisation (animation) includes the pattern migration communi-

ties discovered, using Newman, as described above. The communities are depicted as

“islands” demarcated by a “shoreline” (for aesthetic purposes the islands are also con-

toured, although no meaning should be attached to these contours). The visualisation

process is described in Sub-section 4.6.1, and the animation in Sub-section 4.6.2, below.

4.6.1 Visualisation of Pattern Migration

For the visualisation, Visuset locates nodes in a 2-D “drawing area” using the Spring

Model [60]. The spring model for drawing graphs in 2-D space is designed to locate

nodes in the space in a manner that is both aesthetically pleasing and limits the number

of edges that cross over one another. The graph to be depicted is conceptualised in

terms of a physical system where the edges represent springs and the nodes inanimate

objects connected by the springs. Nodes connected by “strong springs” therefore attract

one another while nodes connected by “weak springs” repulse one another. The graphs

are drawn following an iterative process. Nodes are initially located within the 2-D

space using some set of (random) default locations (usually defined in terms of an x

and y coordinate system) and, as the process proceeds, pairs of nodes connected by
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strong springs are “pulled” together. In the context of FPTA, the spring value was

defined in terms of a correlation coefficient (C):

Cij =
X√

(|Meki| × |Mek+1j |)
(4.3)

where Cij is the correlation coefficient between a node i in SOM Mek and a node j

in SOM Mek+1
(note that i and j can represent the same node but in two different

maps), X is the number of patterns that have moved from node i to j and |Meki|
(|Mek+1j |) is the number patterns at node i (j) in SOM Mek (Mek+1

). A migration

is considered “interesting”, and thus highlighted, if C is above a specified minimum

relationship threshold (Min-Rel). With respect to the GB cattle movement data net-

work, a threshold of 0.2 was found to provide a good working Min-Rel value; although

Visuset does allow users to specify, and experiment with whatever Min-Rel value they

like. The Min-Rel value is also used to prune links and nodes; any link whose C-value

is below the Min-Rel value is not depicted in the visualisation, similarly any node that

has no links with a C-value above Min-Rel is not depicted.

The Visuset spring model algorithm (a simplified version) proceeds as follows:

1. Set drawing area size constants, SIZEX and SIZEY .

2. For all pair of nodes, allocate an ideal distance, IDISTij , where i and j are node

numbers. In the current implementation: if a pair has a link, the distance is set

as 200 pixels; otherwise it is set to 500 pixels.

3. Set initial coordinates for all nodes. All nodes are “queued” in sequence, according

to their node number, from the top-left of the drawing area to the bottom-right.

4. For all node pairs determine the actual pixel distance RDISTij (where i and j

are node numbers).

5. For all nodes, recalculate the coordinates using equations 4.4 and 4.5 where:

nodeix (nodeiy) is the x (y) coordinate of Nodei, n is the number of nodes to

be depicted, K is the spring constant, and dxij (dyij) is the absolute value of

Nodeix −Nodejx (Nodeiy −Nodejy).

6. If dxij + dyij is below a specified threshold (in terms of a number of pixels), or if

some maximal number of iterations is reached, exit.

7. Go to Step 4.

nodeix = nodeix +
j=n∑
j=1

(
dxij ×K ×

(
1− IDISTij

RDISTij

))
(4.4)
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nodeiy = nodeiy +
j=n∑
j=1

(
dyij ×K ×

(
1− IDISTij

RDISTij

))
(4.5)

For the current version of Visuset SIZEX = 1280 pixels and SIZEY = 880 pixels,

and the spring constant was set to 0.2. It should also be noted that the selected values

for the ideal distance and spring constant K are related to the values chosen for SIZEX

and SIZEY and the number of nodes and links in the system to be visualised. The

stopping threshold can be set at any value, but from experimentation it was found that

the number of nodes (as a pixel value) provided good operational results. Using Visuset

it is also possible to disable the spring model so that the user can manually position

nodes (and, if applicable, also change the size of individual islands at the same time).

Further details concerning the background and development of Visuset can be found in

[94].

In the proposed implementation of Visuset nodes are depicted as: (i) single nodes

(i.e. self links where the “migration” is from and to the same node), (ii) node pairs

linked by an edge, (iii) chains of nodes linked by a sequence of edges, or (iv) more

complex sub-graphs (islands). The size (diameter) of the nodes indicates the number

of elements represented by that node in Mek (the size of nodes at Mek+1
could equally

well have been used, or some interpolation between Mek and Mek+1
).

4.6.2 Animation of Pattern Migration

The animation mechanism, provided by Visuset, can be applied to pairs of visualisations

(as described above) to illustrate the migration of patterns over three episodes (SOMs).

Each visualisation is referred to as a mapping of the nodes in a SOM Mei to a SOM Mej .

At the start of an animation the display will be identical to the first visualisation (Map1)

and will move to a configuration similar to the second visualisation (Map 2), although

nodes will not necessarily be in the same display location. Thus the animations show

how subsequent mappings change and consequently how the pattern “communities”

change. As the animation progresses the correlation coefficients (C-values) are linearly

incremented or decremented from the values for the first map to that of the second map.

Thus, as the animation progresses the links, nature of the islands, and overall number

of nodes will change. For example if the correlation coefficient for a node in Map 1 is

0.3 and in Map 2 is 0.1 (assuming a threshold of 0.2) the node will “disappear” half way

through the animation. Alternatively, if the correlation coefficient for a node in Map 1

is 0.1 and in Map 2 is 0.5 (again assuming a threshold of 0.2) the node will “appear”

a quarter of the way through the animation. Nodes that disappear and appear are

highlighted in white and pink respectively (nodes that persist are coloured yellow).
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T2 T1 Node ID Total
Node ID 1 2 3

1 4 2 2 8
2 0 6 4 10
3 1 2 9 12

Total 5 10 15 30

Table 4.5: Pattern Migration Summary for Example Network Given in Figure 4.14

T2 T Patterns Patterns Patterns X
Node Node at T1 at T2 Moved P ×Q

√
P ×Q ÷

ID ID (P ) (Q) (X)
√
P ×Q

1 1 5 8 4 40 6.32456 0.63246
1 2 5 10 0 50 7.07107 0.00000
1 3 5 12 1 60 7.74597 0.12910
2 1 10 8 2 80 8.94427 0.22361
2 2 10 10 6 100 10.00000 0.60000
2 3 10 12 2 120 10.95445 0.18257
3 1 15 8 2 120 10.95445 0.18257
3 2 15 10 4 150 12.24745 0.32660
3 3 15 12 9 180 13.41641 0.67082

Table 4.6: C-value (Correlation Coefficient) Calculation for Example Network Given
in Figure 4.14

4.6.3 Worked Example of C-value Calculation

Figure 4.14 shows the migration of patterns through a three node network. The left

hand network shows the state at time one (T1) and the right hand network at time two

(T2). The nodes in each case are labeled with the number of patterns held at the node

at these times. The middle network (in Figure 4.14) shows the number of patterns that

have migrated to and from the nodes in the network from time T1 to time T2. Table 4.5

summarises this migration. The calculation of the C-values (correlation coefficients) for

this network is given in Table 4.6. If a Min-Rel threshold of 0.2 is used (as advocated

by experiments in this thesis), five of the migrations remain, as illustrated in Figure

4.15 (in the figure the arcs are labeled with the relevant C-values).

4.7 Discussions and Assumptions

The research work encapsulated by the modules used for FTPA are among the main

contribution of the work described in this thesis. The proposed mechanisms provide

support for the identification and analysis of trends in social network datasets. It is

assumed that the datasets are arranged in episodes so that trend comparisons can be

conducted. The discovered trend patterns are selected if at least one of their frequency
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counts is above the minimum threshold; the sequence of frequency counts is then used to

define a “trend line”. As will be established by the evaluation described in the following

chapter, using the identified trends users will be able to obtain useful knowledge so as

to provide support for decision making.

The FPTA process addresses the research issues on pattern and trend representa-

tion, analysis and interpretation identified in Section 1.2. As will be demonstrated the

proposed modules are able to handle large collections of episodes and interpret patterns

and trends so as to highlight “interesting” and significant patterns and trends. The

trend grouping and clustering methods allows users to view patterns and trends in a

specific and more focused way. The process accentuates trend changes and pattern

migration between episodes so as to support the identification of temporal changes in

data. The Visuset software incorporated into the FPTA process presents networks of

relationships between trend clusters and patterns so as to provide users with a clear

illustration of these changes.

To maintain the flexibility and re-usability of the proposed modules, a number of

assumptions were applied:

1. Data format: The datasets are in a binary valued format.

2. Data granularity: The time stamps and episodes are uncomplicatedly defined

according to users’ needs and interests. (In this thesis the time stamps are as-

sumed to represent months and the episodes years)

3. Process sequence: The input to each module (except the first module) is the

output from previous module.

4.8 Summary

This chapter presented the FPTA process which comprises four of the modules included

in the Predictive Trend Mining framework: (i) Trend Identification, (ii) Trend Group-

ing, (iii) Pattern Migration Clustering and (iv) Pattern Migration Visualisation. The

objective of FPTA is to provide support for the identification of temporal patterns and

trends, and provide support for their analyses. In the Trend Identication module, TM-

TFP identifies frequent patterns or itemsets and determines the support values used

to define trends. The Trend Grouping module groups similar types of trends and de-

tects changes that may indicate “interesting” patterns and trends. The identified trend

changes and pattern migrations are then used by the Pattern Migration Clustering and

Visualisation modules. In the following chapter, the evaluation of the FTPA process is

presented.
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Figure 4.12: Four Node Example Network
Figure 4.13: Dendrogram for Hierarchical
Clustering Example

T1 T2

Figure 4.14: Three Node Example Network Showing Pattern Migrations from T1 to T2

Figure 4.15: Three Node Example Network with Irrelevant links Removed
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Chapter 5

Evaluation of The Frequent
Pattern Trend Analysis
Mechanism

In this chapter the author presents the results of a number of experiments conducted

to evaluate the Frequent Pattern Trend Analysis element of the research described in

Chapter 4. From Chapter 4 it will be recalled that the proposed mechanisms encom-

passes: (i) Trend Identification, (ii) Trend Grouping, (iii) Pattern Migration Clustering

and (iv) Pattern Migration Visualization. The experiments described in this chapter

were designed to demonstrate that the proposed mechanisms served to achieve the re-

search objectives at which they were directed, and contributed to the provision of an

answer to the overall research question as presented in Chapter 1. More specifically

the intention is to demonstrate the flexibility, reusability and effectiveness of the Trend

Identification, Trend Grouping, Pattern Migration Clustering and Pattern Migration

Visualisation modules.

The evaluation of each module is described in sequence according to the order

in which each is applied in the Predictive Trend Mining Framework (PTMF). The

evaluation was conducted using the three social network datasets presented in Chapter

3. Each dataset was preprocessed in the same manner.

All three datasets provided consistent results to support the research objectives. A

large number of frequent patterns and trends were identified for all the network datasets

using several minimum support thresholds. In each case these trends were then grouped

into trend clusters using a SOM. The resulting SOM maps were then analysed so as to

identify pattern migrations. Lastly the visualisation module was applied to illustrate

the captured pattern migration information in the form of network maps for display to

end users.

The remainder of this chapter is organized as follows. In Section 5.1 the experimen-

tal analysis of the Trend Identification module using the three selected social network

datasets is discussed. Section 5.2 presents a demonstration of the Trend Grouping mod-
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ule when applied to large numbers of discovered frequent patterns and trends. Section

5.3 then discusses and analyses the pattern migration and the identification of trend

clusters that involve pattern migrations. In Section 5.4, a discussion is presented that

considers the experimental evaluation of the Pattern Migration Visualisation module.

Finally, in Section 5.5, the chapter is concluded with a brief summary.

5.1 Experimental Analysis of The Trend Identification Mod-
ule

In general, the modules for Frequent Pattern Trend Analysis (FPTA) can be applied

to social network data of all kinds. However, as noted in earlier chapters, the work in

this research focuses on business community social networks. This section describes the

evaluation of the Trend Identification module using the CTS social network, Deeside

Insurance social network and MAF Logistic Cargo social network introduced earlier.

The Trend Identification module was designed to take input in a standard binary valued

format. The idea being that this would allow for general applicability (as confirmed by

the use of the three different datasets for the evaluation described here). Each of the

experiments assumed twelve time stamps per data episode (e) where each time stamp

represented a month of data. More specifically: (i) the CTS network has 4 × 12 time

stamps, (ii) the Deeside Insurance network has 2× 12 time stamps, and (iii) the MAF

Logistic Cargo network has 2× 12 time stamps.

The TM-TFP algorithm operates using a minimum support thresholds, α, to iden-

tify the frequent patterns. As mentioned earlier, low support threshold values are

desirable so as to make sure that no “interesting” patterns are missed. Thus a range

of α values were considered with respect to each dataset. In the following sub-sections,

Sub-section 5.1.1 provides the Trend Identification results from the CTS network, then

Sub-section 5.1.2 discusses the trend identification results using the Deeside Insurance

network followed by the results obtained using the MAF Logistic Cargo network in

Sub-section 5.1.3. In each case the analysis was conducted in terms of the number

of identified frequent patterns and the run time. Some experimental analysis using

attribute feature constraints are then presented in Sub-section 5.1.4. The section is

concluded with a brief summary (Sub-section 5.1.5).

5.1.1 GB Cattle Movement Trend Identification

For experimental purposes, using CTS dataset, three support threshold values of 0.5%,

0.8% and 1.0% were used. The number of identified frequent pattern trends in each

case is presented in Table 5.1 (a similar table was presented in Table 4.1 in Chapter

4). From the tables it can be seen that large numbers of trends are discovered. For

example, using a support threshold of 0.5%, the number of identified trends discovered
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Episode Support Threshold
(year) 0.5% 0.8% 1.00%

2003 63,117 34,858 25,738
2004 66,870 36,489 27,055
2005 65,154 35,626 25,954
2006 62,713 33,795 24,740

Average 64,464 35,192 25,872

Table 5.1: Number of trends identified using TM-TFP for a sequence of four CTS
network episodes and a range of support thresholds

Episode Support Threshold
(year) 0.5% 0.8% 1.00%

2003 97.02 69.49 63.54
2004 92.44 70.0 64.0
2005 83.25 59.55 53.5
2006 101.06 72.95 66.09

Average 93.44 68.00 61.78

Table 5.2: The TM-TFP algorithm run time values (seconds) using the CTS social
network episodes

over the four episodes (2003, 2004, 2005 and 2006) were 63117, 66870, 65154 and 62713

respectively. The number of frequent patterns discovered, as expected, increases as the

support threshold decreases. The lower the support threshold the greater the number of

discovered frequent patterns and hence the greater the number of trends. Thus the use

of a low support threshold ensures that no potentially interesting trends are omitted.

The number of frequent patterns and trends are significantly reduced when a minimum

support of 1.0% is used. Nevertheless, the identified “super” set of frequent patterns

discovered when using 0.5%, 0.8% and 1.0% are similar. For completeness, Table 5.2

shows the run time values for identifying frequent patterns and trends so as to give an

indication of the time complexity of the TM-TFP algorithm. From the table it can be

seen that increases in the minimum support thresholds results in corresponding linear

decreases in the TM-TFP run time.

Some examples of the sort of the frequent patterns that may be extracted from the

CTS network are presented in Table 5.3. Simmental cattle are a versatile breed of cattle

from Switzerland often crossed with other breeds. The patterns include: information

on animal age, animal gender, breed name, breed type (dairy or beef), number of cattle

moved, and sender and receiver location type and grid square area. It should be noted

that the first two frequent patterns in Table 5.3 include “zero” support values in the

trend definition. It should be recalled that this is not a real zero, but indicates that the
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No. Frequent Patterns Trends
1. {2year old ≤ AnimalAge ≤ 5year old, {2765, 2211, 2562, 3279,

Breed = Friesian, Breed Type = 0, 1307, 2004, 1906,
dairy,Receiver Location Type = 2593, 3315, 3391, 3152}
Slaughter House(RedMeat)}

2. {Gender = female, 2year old ≤ Animal {2741, 2193, 2541, 3251,
Age ≤ 5year old,Breed = Friesian, 0, 1295, 1995, 1896,
Breed Type = dairy,ReceiverLocationType = 2581, 3299, 3384, 3145}
Slaughter House(RedMeat)}

3. {Gender = female,Breed = Simmental Cross, {4050, 3322, 3175, 3690,
Breed Type = beef and dairy, 2777, 2722, 2972, 2494,
Receiver Location Type = Slaughter 3082, 3823, 3951, 3717}
House (RedMeat)}

4. {Breed Type = beef, SenderArea = 13, {1786, 1593, 1553, 1736,
Receiver Location Type = Slaughter 1410, 1291, 1541, 1369,
House (RedMeat)} 1839, 2000, 1772, 1694}

5. {AnimalAge ≤ 1yearold,Breed Type = beef, {2098, 1925, 2854, 3051,
ReceiverArea = 14, ReceiverLocationType = 3364, 2705, 2793, 2469,
Agricultural Holding,Number Cattle 3018, 3189, 3031, 2336}
Moved ≤ 5}

Table 5.3: Example frequent patterns and associated trends obtained from the 2003
CTS network using a 0.5% minimum support threshold

support value at the associated time stamp dropped below α (see discussion in Section

4.3).

Figure 5.1 presents a visualisation of the trends given in Table 5.3. The trend lines

in the figure show that it is possible to identify a variety of types of trend line in the

CTS data. The trend lines illustrate that the monthly frequency occurrences for each

pattern fluctuate throughout the year. In certain months the trends experienced sharp

rises and dips below the α threshold (trend lines 1 and 2). Note that the reason why

trends 1 and 2 are similar is that almost all dairy animals are between two and five

years of age and are female. Male animals (if not eaten earlier on) reach a much greater

age.

5.1.2 Deeside Insurance Quotation Trend Identification

The Deeside Insurance social network was used to demonstrate the general applicability

of the TM-TFP algorithm with respect to alternative types of social network data to

that described by the CTS dataset (recall that the Deeside Insurance dataset comprises

a star network while the CTS network is a described as a complex star network). Table

5.4 presents the number of trends generated by applying TM-TFP to the Deeside

Insurance dataset using a range of support thresholds of 2%, 3% and 5% respectively.

Higher support thresholds were used than in the case of the CTS dataset because the
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Figure 5.1: Trend lines for the CTS Frequent Patterns given in Table 5.3

Deeside Insurance dataset was smaller (in terms of number of records).

Although the Deeside Insurance dataset was smaller than the CTS dataset, and

higher values for α were used, a larger number of patterns and consequently trends were

still identified using the TM-TFP algorithm. The reason behind this is that the Deeside

Insurance social network has more data attributes compared to CTS social network.

Thus the number of attributes in the input data is an important contributing factor

with respect to the number of trends identified. Table 5.5 presents the recorded run

time values obtained when identifying patterns and trends using the Deeside Insurance

dataset.

Episode Support Threshold
(year) 2% 3% 5%

2008 314471 142175 55241
2009 284871 122371 49983

Average 299671 132273 52612

Table 5.4: Number of frequent pattern trends identified using the Deeside Insurance
network and a range of support thresholds

Table 5.6 shows some examples of frequent patterns and trends identified using the

Deeside Insurance dataset. Again, the trends associated with each pattern comprise

12 frequency counts. The frequent patterns attributes include: the length of disquali-
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Episode Support Threshold
(year) 2% 3% 5%

2008 23.43 12.8 5.67
2009 23.42 11.77 4.99

Average 23.43 12.29 5.33

Table 5.5: The TM-TFP algorithm run time values (seconds) using the Deeside Insur-
ance social network

No. Frequent Patterns Trend
1. {Length of disqualification ≤ 5, {40, 51, 49, 49,

0 ≤ Convict code number ≤ 50, 65, 54, 64, 72,
Convict code = NULL, 0 ≤ Postcode sector ≤ 10, 90, 102, 80, 61}
2001 ≤ Y ear of manufactured ≤ 2006}

2. {Fault = yes, Length of disqualification ≤ 5, {28, 18, 21, 35,
Convict code = NULL, 0 ≤ Postcode sector ≤ 10, 27, 28, 34, 54,
0 ≤ Engine size ≤ 1000} 82, 51, 54, 30}

3. {Fault = yes, Length of disqualification ≤ 5, {21, 20, 31, 32,
Convict code = NULL, 0 ≤ Postcode sector ≤ 1, 28, 25, 28, 42,
1601 ≤ Engine size ≤ 2000} 70, 42, 40, 32}

4. {0 ≤ Penalty ≤ 1000, Length of disqualification ≤ 5, {20, 22, 24, 45,
Convict code = SP, 0 ≤ Postcode district ≤ 10, 19, 33, 29, 37,
Postcode area = CH,Engine size ≤ 2001} 37, 0, 23, 25}

5. {Penalty ≤ 2001, Length of {13, 0, 14, 0,
disqualification ≤ 5, 0, 19, 25, 0,
0 ≤ Postcode sector ≤ 10} 0, 0, 23, 24}

Table 5.6: Example frequent patterns and associated trends obtained from the 2008
Deeside Insurance network using a 5% minimum support threshold

fication, conviction code and number, car year of manufacture and customer postcode.

Customer postcode is a spatial attribute that indicates the geographic distribution of

the Deeside Insurance network. Again in the last two examples shown in Table 5.6, the

trend lines sometimes drop below α.

Figure 5.2 shows the trend lines associated with the examples of frequent patterns

presented in Table 5.6. Three of the trend lines shown in the figure have a steady

increase and peak in September and October and dip sharply in November and Decem-

ber; thus indicating a high demand for insurance quotes in September and October.

Trends 4 and 5 have support values that fall below α as indicated by the zero values

for certain months.

5.1.3 MAF Logistic Cargo Distribution Trend Identification

The experiments conducted using the MAF Logistic Cargo network were principally

designed to corroborate the results produced using the CTS and Deeside Insurance
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Figure 5.2: Trend lines for the Deeside Insurance Frequent Patterns given in Table 5.6

networks. The major difference between the MAF Logistic Cargo dataset and the

other two datasets, however, is that the number of records is far fewer compared to

the other two cases. Nevertheless, the results obtained demonstrated that even with a

small number of data records, a large number of frequent patterns and trends can still

be identified if the dataset features a significant number of attributes.

Episode Support Threshold
(year) 2% 3% 5%

2008 3491 3491 3491
2009 2761 2761 2609

Average 3126 3126 3050

Table 5.7: Number of frequent pattern trends identified using the MAF Logistic Cargo
network and a range of support thresholds

Three minimum support threshold values of 2%, 3%, and 5% were used. Table 5.7

shows the number of frequent patterns and trends identified using the MAF Logistic

Cargo network dataset. Because of the small number of records (average of approx-

imately 40 per time stamp) the same number of patterns are discovered in both the

2008 and the 2009 datasets regardless of the minimum support threshold (α value)

used. Table 5.8 presents the recorded run times (in seconds) obtained when applying

TM-TFP to identify the patterns and trends in the MAF Logistic Cargo dataset.
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Episode Support Threshold
(year) 2% 3% 5%

2008 0.27 0.25 0.23
2009 0.27 0.26 0.24

Average 0.27 0.26 0.24

Table 5.8: The TM-TFP algorithm run time values (seconds) using the MAF Logistic
Cargo network network

No. Frequent Patterns Trend
1. {Logistic items = Ordnance items} {3, 7, 3, 2, 6, 1,

3, 1, 3, 3, 2, 1}
2. {Sender city = Batu Caves, {0, 2, 3, 1, 1, 4,

Logistic items = 1 tonne truck} 1, 0, 0, 0, 0, 0}
3. {Sender city = Batu Caves, {0, 11, 8, 4, 1, 8,

Sender = 92 DKP} 3, 0, 3, 1, 3, 0}
4. {Sender city = Batu Kentonmen, Sender = 91 DPO, {3, 0, 3, 2, 2, 1,

Logistic items = Ordnance items} 3, 1, 3, 3, 1, 1}
5. {Receiver = 5 KOD,Sender = 91 DPO} {1, 0, 1, 0, 0, 1,

1, 1, 1, 1, 0, 1}
6. {Receiver = 5 KOD,Sender city = Batu Kentonmen, {1, 0, 1, 0, 0, 1,

Sender = 91 DPO,Logistic items = Ordnance items} 1, 1, 1, 1, 0, 1}
7. {Receiver city = Sibu,Receiver = 9 KOD, {2, 0, 0, 2, 1, 0,

Sender city = Batu Kentonmen} 1, 0, 0, 2, 0, 2}
8. {MYR50001 ≤ Shipment cost ≤MYR100000, {0, 0, 2, 1, 0, 0,

Receiver city = Sibu, Sender city = Batu Kentonmen, 1, 0, 0, 0, 1, 0}
Sender = 91 DPO,Logistic items = Ordnance items}

Table 5.9: Example frequent patterns and associated trends obtained from the 2008
MAF Logistic Cargo network using a 5% minimum support threshold

Table 5.9 provides some examples of frequent patterns and trends extracted from the

MAF Logistic Cargo network. The frequent patterns feature the following attributes:

logistic item, shipment cost, sender ID, receiver ID and city location of sender and

receiver. Again, the identified trends in the MAF Logistic Cargo frequent patterns

have several support values below α. Figure 5.3 illustrates the trend lines associated

with the frequent pattern examples given in Table 5.9. From the figure it can be seen

that the trend lines fluctuate with sharp increases and drops; again it is difficult to

interpret and analyse the trends. Thus it was deemed desirable to have a clustering

method for grouping the discovered trend lines so as to provide support for further

analysis.
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Figure 5.3: Trend lines for the MAF Logistic Cargo Frequent Patterns given in Table
5.6

5.1.4 Experimental Analysis of Trend Identification with Constraints

From the above a large number of trends are typically discovered. This hampers their

analysis. One way of supporting the desired analysis is the proposed clustering facility

to group similar trends. Another way of reducing the overall number of trends is to

apply some form of constraints to the input data. To determine the effect of using

constraints a number of experiments were conducted using the CTS and Deeside In-

surance networks datasets. The constraints are subjective according to nature of the

users’ interests. However by using constraints, it is possible to reduce the number of

discovered patterns and trends and thus reduces the overall complexity of the findings.

Note that the analysis of the use of constraints presented here has been previously

published by the author in [98].

For the analysis using the CTS network, in the context of constraints, the author

applied several pattern constraints. In the reported experiments, three pattern con-

straints were applied:

Constraint 1: {Breed Type = Beef}
Constraint 2: {Breed Type = Dairy}

Constraint 3: {Sender Location Type =

Agricultural holdings, Receiver Location Type = Market}

The effect of Constraint 1 and Constraint 2 is that only records with cattle used for
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Beef or Dairy respectively are considered. Whereas, Constraint 3 is designed to select

records describing cattle movements from Agricultural holdings to Markets. Table 5.10

presents the number of patterns and trends discovered using all the available data and

with the above constraints applied. As in the previously reported experiments, as the

support threshold increases, the number of identified patterns and trends decreases

which may ease the process of interpretation of patterns and trends. However, it can

be noted that the use of constraints serves to reduce to overall number of patterns

(trends) to be considered when conducting further analysis.

Support No Constraint 1 Constraint 2 Constraint 3
Threshold (%) Constraint

1 25736 2333 2583 1195
2 8945 1019 1181 535
3 4393 541 715 383
4 2739 349 483 311
5 1928 249 339 267

Table 5.10: Number of identified patterns using CTS network

Similarly, for the analysis using the Deeside Insurance network, the author also

applied a number of pattern constraints so as to reduce the number of patterns to be

considered to a more manageable number. The following three pattern constraints were

applied:

Constraint 1: {DriverAge = {24 : 40}}
Constraint 2: {Gender = Male}

Constraint 3: {PostcodeArea = CH}

Constraint 1 has the effect of insisting that frequent patterns include the attribute

DriverAge = {24 : 40} (age between 24 and 40), while Constraint 2 has the effect of

limiting the set of frequent patterns to those where Gender has the value Male. Con-

straint 3 has the effect of restricting patterns to those that include the PostcodeArea

“CH” (Chester).

Support No Constraint 1 Constraint 2 Constraint 3
Threshold (%) Constraint

1 830306 8239 5621 3965
2 206219 2163 1431 1595
3 94369 1038 677 863
4 55445 669 401 563
5 37239 469 283 427

Table 5.11: Number of identified trends using Deeside Insurance network
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Table 5.11 gives the number of patterns and trends discovered using all the Deeside

Insurance data; and with the application of each of the constraints. As expected, with

low support thresholds, a large number of trends are generated in each case. When a

constraint is imposed, the number of records to be considered is substantially reduced

therefore fewer trends are discovered.

5.1.5 Trend Identification Summary

From the foregoing reported experiments conducted regarding the Trend Identification

module, it can be deduced that, regardless of the sizes of the network the module is

able to identify large numbers of frequent patterns trends (assuming a suitable α value

is used). Because of the large numbers of patterns and trends that are discovered using

TM-TFP, it is suggested that it will be difficult to analyse further the significance of

the discovered patterns and trends without conducted some additional processing on

the identified trends first. To aid the desired interpretation the use of constraints was

suggested. To further aid interpretation trend grouping was proposed. An analysis of

the Trend Grouping module is presented in the next section.

5.2 Experimental Analysis of The Trend Grouping Mod-
ule

This section reports on the experimental analysis of the Trend Grouping module using

the patterns and trends discovered with three different α values: (i) 0.5% for CTS, (ii)

5% for Deeside Insurance and (iii) 5% for MAF Logistic Cargo. The objective of the

Trend Grouping module is to cluster similar identified trends so as to facilitate their

analysis. SOM technology was proposed to identify the desired trend clusters. The

SOM grid parameters (7× 7 and 10× 10) were defined according to the number of the

discovered patterns and trends. Experiments have been done to determine the SOM

grid parameters as described in Chapter 4. Recall that each node in the SOM map

describes a trend cluster. Details of the frequent patterns (pattern codes and the count

of the patterns) associated with each trend cluster are maintained.

Figure 5.4 provides the run time figures for grouping all three networks’ trends

(details of numbers of trends and α were given in Tables 5.1, 5.4 and 5.7). The chart

in figure 5.4 shows that Deeside’s trends took the longest run time to be grouped as a

larger number of patterns were discovered using α = 2% and 3%.

In the following sub-sections, the results of experiments to group the identified

trends are presented with respect to the CTS in Sub-section 5.2.1, Deeside Insurance

in Sub-section 5.2.2 and MAF Logistic Cargo in Sub-section 5.2.3. Some findings using

the concept of constraints, which has previously been report in [98], are also presented

in Sub-section 5.2.4. A brief summary of this section is presented in Sub-section 5.2.5.
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Figure 5.4: Trend grouping module run time (minutes) for the CTS, Deeside Insurance
and MAF Logistic Cargo networks

5.2.1 GB Cattle Movement Trend Grouping

With respect to the CTS dataset, to identify the groupings within the collection of

trends identified using TM-TFP, the SOM software was initialising with a 10×10 node

map, and trained using the frequent pattern trends produced with the (earliest) 2003

episode. The resulting prototype map is shown in Figure 5.5. The prototype map

groups similar trends occurring in the 2003 episode so that seasonal movement varia-

tions may be identified. For example: node 34 describes trends where the associated

pattern is more prevalent in March, June and October; nodes 44 and 54 both describe

trends where the associated pattern occurs frequently in spring and autumn; and so

on. Analysis of the prototype map indicates, as might be expected, that hierarchies

of patterns, comprising collections of sub-sets of a “parent” pattern, tend to appear in

the same clusters. Recall also that the proximity between SOM nodes indicates the

similarity between them; the greatest dissimilarity is thus between nodes at opposite

ends of the diagonals in the SOM map.

Once the initial prototype map had been generated a sequence of trend line maps

was produced, one for each episode. Figure 5.6 gives the map for the 2003 trend lines

and Figure 5.7 that for the 2004 trend lines. Note that in Figures 5.6 and 5.7 each node

has been annotated with the number of trends in the “cluster”, and that nodes with

“darker” trend lines indicate a greater number of lines within that cluster than nodes

with “lighter” trend lines.

89



F
ig

u
re

5.
5
:

C
T

S
n

et
w

or
k

p
ro

to
ty

p
e

m
ap

ge
n

er
at

ed
u

si
n

g
20

03
ep

is
o
d

e

90



F
ig

u
re

5.
6:

C
T

S
n

et
w

or
k

T
re

n
d

li
n

e
M

ap
fo

r
20

03
ep

is
o
d

e

91



F
ig

u
re

5.
7:

C
T

S
n

et
w

or
k

T
re

n
d

li
n

e
M

ap
fo

r
20

04
ep

is
o
d

e

92



0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u

m
b

e
r 

o
f 

Tr
e

n
d

s

SOM Node

2003

2004

2005

2006

Figure 5.8: CTS network number of trends per SOM node per episode

Figure 5.8 indicates the number of trends in each cluster (i.e. cluster size) in each

node for the four episodes (years) considered in this demonstration. Notice that larger

quantities of patterns for all CTS episodes are grouped into the SOM nodes between

20 and 80.

5.2.2 Deeside Insurance Quotation Trend Grouping

In the experiment using the Deeside Insurance network, a 7 × 7 SOM was used and

trained using the 2008 data. The prototype map is presented in Figure 5.9. From

the figure it can be seen, for example, that node 1 indicates a trend line with high

support mainly in February, whilst node 7 shows a trend line with high support mainly

in March. It is interesting to note that there are many trends with “peaks” in the first

quarter of the year (which means that there is a high probability of a request for an

insurance quotation between Jan and May). However, nodes 36, 37, 38, 39, 43, 44 and

45 have a high requests for insurance quotes in September.

The prototype map was then populated with the 2008 and 2009 data to produce a

sequence of two maps as shown in Figures 5.10 and 5.11. From the figures, there are

a number of SOM nodes that are empty. This indicates that even though the number

of trends found in the Deeside Insurance network was considerable a 7× 7 SOM is well

suited to group the Deeside Insurance trends. Notice that in the 2008 trend line map,

node 30 has the highest number of trends (4239); and in the 2009 trend line map, node

24 has the highest number of trends (8851). These nodes, 30 and 24, have a steady
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trend line throughout the year.

Figure 5.12 shows the number of trends in each SOM node for the 2008 and 2009

trend line maps. A number of nodes, like nodes 1, 7, 30, 31 and 48, have a larger number

of trends in the 2008 trend line map. Likewise, in the 2009 trend line map, nodes 18,

24, 29, 35 and 43, have larger numbers of trends. Using the proposed pattern migration

technique it would be possible for a user to determine if there is any correlation between

these sets of trends.

5.2.3 MAF Logistic Cargo Distribution Trend Grouping

To corroborate the previous findings, the MAF Logistic Cargo patterns and trends

were also clustered using the Trend Grouping module. Similar to Deeside Insurance

network SOM, a 7×7 node map was again used to group the trends. Figure 5.13 shows

the resulting prototype map based on the trends for the 2008 data episode. From the

prototype map, a number of trend types can be identified; for example, node 1 holds

trend lines with high support between October and December, whereas node 34 has

trend lines with support that fluctuates throughout the year.

The prototype map was then populated with the 2008 and 2009 data episodes to

form the SOM trend line maps shown in Figures 5.14 and 5.15. From the maps, it can

be seen that a number of nodes are empty as there are not as many MAF Logistic Cargo

patterns and trends than in the case of the CTS and Deeside Insurance networks. From

the experiments conducted to determine the most suitable SOM grid configuration,

prototype maps of 7×7, 10×10 and 12×12 were all found to provide trend line shapes

that are very similar. Thus the author settled for a 7 × 7 map for the MAF Logistic

Cargo network as the trends can still be effectively fitted to the best matching trend

line according to the prototype map while gaining computational advantages over the

use of the 10 × 10 or 12 × 12 grids. Inspection of both maps indicates that in 2008

the majority of trends are grouped in node 43 (494 trends), which describes trends

where the cargo distribution activities are high in February; and in 2009 the majority

of trends are grouped in node 22 (360 trends), which describes trends with high activity

in January.

Figure 5.16 shows the overall number of trends held in the MAF Logistic Cargo

2008 and 2009 trend line maps. In the 2008 map, the nodes 1, 21, 22, 33 and 41 have

larger numbers of trends in the trend clusters. Whereas in the 2009 map, the nodes

7, 21, 33, 43 and 48 have large numbers of trends. Again it would be of interest to

determine whether there are any correlations between these results.

5.2.4 Experimental Analysis of Trend Grouping with Constraints

This sub-section describes the analysis of the Trend Grouping module using constraints

to filter records in the CTS and Deeside Insurance networks. The analysis repeated here
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Figure 5.12: Deeside Insurance network number of trends per SOM node per episode

formed part of the experiment discussed in Sub-section 5.1.4, and which was published

in [98]. For both networks, a 7 × 7 SOM grid was used as the number of discovered

patterns and trends would be reduced.

Figure 5.17 illustrates the prototype SOM for trends generated with a support

threshold of 1% with Constraint 1 ({Breed Type = Beef}). The prototype map dis-

plays node clusters of the discovered CTS trends. For example, node 1 (top-left) rep-

resents trends that have high support in early summer (May), while node 43 (bottom-

left) indicates trend lines with high support in autumn only (October). Again, based

on this prototype map, a sequence of SOM trend line maps was generated using the

CTS episodes from 2003 to 2006.

Likewise, Figure 5.18 presents the prototype SOM for trends generated using a

support threshold of 1% with Constraint 1 ({DriveAge, {24 : 40}}). The prototype

map displays the characteristics of the trend line clusters. For example, with reference

to the figure, node 1 (top-left) represents trends with high support from January to

March, while node 18 (center) portrays trends with fluctuating support values in April,

June and August. Note that, the distance between nodes indicates the dissimilarity

between nodes; the greatest dissimilarity is thus between nodes at opposite ends of

the diagonals. Based on this prototype map, a sequence of SOM trend line maps were

generated using Deeside Insurance episodes 2008 and 2009.

Both prototype maps feature different trend line shapes, than those in the prototype

maps generated without the use of constraints, indicating that the identified subset
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Figure 5.16: MAF Logistic Cargo network number of trends per SOM node per episode

of frequent pattern trends that are identified using constraints are different to those

discovered using the entire dataset. Given the nature of the constraints used for the

experiments this is to be expected. Notice also that there are not as many distinct

shapes in Figures 5.17 and 5.18 as in Figures 5.5 and 5.9.

5.2.5 Trend Grouping Summary

Using the Trend Grouping module, large numbers of trends may be grouped using a

set of SOM maps. This mechanism allows users to discover what types of trends are

associated with the identified frequent patterns. From Figure 5.8, it could be seen that

there is a great deal of variation in the size of the identified trend clusters in the CTS

network data, and that consequently additional analytical support is desirable. Also, in

Figures 5.12 and 5.16, large numbers of trends can be observed when using the Deeside

Insurance and MAF Logistic Cargo data. Although it is argued here that the use of

the concept of trend clusters provides support for the analysis of identified trends, the

large number of trends that may be held within an individual cluster makes further

support for enhanced analysis desirable.
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5.3 Experimental Analysis of The Pattern Migration Clus-
tering Module

In this section the analysis of the Pattern Migration Clustering module is discussed. The

module groups frequently occurring pattern migrations. There are two main processes

in this module, (i) identification of pattern migrations and (ii) clustering of the identified

pattern migrations to determine communities of trends. It is conjectured that if there

are a large number of patterns at a node n1 in SOM Me which then migrate to a node

n2 in SOM Me+1 this will be of interest. If a SOM map is viewed as a network where

all nodes are linked to all other nodes, then the links represent potential “migration

paths”, in which case it will be useful to identify groups of nodes with high connectivity.

Such groups are referred to as islands so as to distinguish them from the trend clusters

represented by individual SOM nodes. In the context of more traditional social network

analysis we might refer to these islands a communities. As described in Chapter 4 a

hierarchical clustering method was used to group highly connected trends (SOM nodes)

into islands. Once the islands have been discovered the Pattern Migration Visualisation

module was used to present this information to users (see Section 5.4).
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Figure 5.19: Pattern Migration Clustering module run time (seconds) for the CTS,
Deeside Insurance and MAF Logistic Cargo networks

In this section each of the three network datasets is considered in turn, CTS fre-

quent patterns and trends using a 0.5% support threshold, Deeside Insurance frequent

patterns and trends using a 5% support threshold and MAF Logistic Cargo frequent
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patterns and trends using a 5% support threshold. Figure 5.19 shows the computational

run time of the Pattern Migration Clustering Module. Processing of the CTS network

required more time as it contained more patterns and trend clusters than the Deeside

Insurance and MAF Logistic Cargo datasets. The number of pattern migrations in

each case is presented using a Migration Matrix of the form shown in Table 5.12. The

matrix shows the numbers of patterns that have migrated from Me to Me+1, ni,i gives

the number of patterns that have stayed in cluster ci in both trend line maps (the term

self-link is used to indicate such migrations), ni,j gives the number of patterns that

have migrated from ci in Me to cj in Me+1. The Q values required for the hierarchical

clustering are calculated using these numbers of pattern migrations, and are used to

cluster the pattern migrations.

C1 C2 C3 C4 . . . Cn

C1 n1,1 n1,2 n1,3 n1,4 . . . n1,n
C2 n2,1 n2,2 n2,3 n2,4 . . . n2,n
C3 n3,1 n3,2 n3,3 n3,4 . . . n3,n
C4 n4,1 n4,2 n4,3 n4,4 . . . n4,n
...

...
...

...
... . . .

...

Cn nn,1 nn,2 nn,3 nn,4 . . . nn,n

Table 5.12: Format of a Migration Matrix

The numbers of pattern migrations (given in Table 5.12) are also used to determine

the C values for the Pattern Migration Visualisation module (considered in Section

5.4). The C values (introduced in the Chapter 4) are used to identify the positions and

relationships of trend cluster nodes to support the visualisation and animation of trend

migrations. The analysis of the Pattern Migration Clustering module with respect

to the CTS, Deeside Insurance and MAF Logistic Cargo networks are presented in

Sub-sections 5.3.1, 5.3.2 and 5.3.3 respectively. Pattern migration using constraints is

considered in Sub-section 5.3.4. This section is summarised in Sub-section 5.3.5.

5.3.1 GB Cattle Movement Pattern Migration

Using the trend cluster analysis algorithm (Algorithm 4.7 in Chapter 4), pattern migra-

tions in the CTS network are identified by observing which node the pattern belonged

to in Me and where the pattern moved to in Me+1. The difference between the nodes’

locations in the SOM maps indicate the distance traveled. The greater the distance

the more “interesting” a pattern migration may be deemed to be.

Some examples of CTS patterns migrations from one node to another between SOM

M2003 to M2006 are shown in Table 5.13. From the table it can be seen that, the trend

line associated with pattern {ReceiverArea = 14, SenderArea = 13, AnimalAge ≤
1yearold} was in node 10 in the 2003 SOM map and moved to node 8 in the map
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for 2004, then moved to node 44 in the map for 2005 and ended up in node 18 in the

map for 2006. The pattern {Number cattle moved ≤ 5, Receiver location type =

Slaughter House (Red Meat), Receiver Area = 14, Sender Area = 13, Gender =

female} was only considered significant (frequent) in two data episodes, 2004 and

2005. It was in node 20 in the map for 2004 and moved to node 80 in the map for

2005. Referring to the CTS network prototype map in Figure 5.5, it can be seen that

the change of trend “type”, from trends that are prevalent between Sept and Dec in

2004 to trends that are prevalent from December and January in 2005, can be said to

be significant (or at least interesting).

No. Frequent Patterns Node Dist Node Dist Node Dist Node
M2003 M2004 M2005 M2006

1. {Receiver Area = 14, 10 2.0 8 5.1 44 4.8 18
Sender Area = 13,
Animal Age ≤ 1yearold}

2. {Number cattle moved ≤ 5, 0 0 20 9.8 80 0 0
Receiver location
type = Slaughter House
(Red Meat), Receiver Area = 14,
Sender Area = 13,
Gender = female}

3. {Receiver Area = 44, 6 1.0 5 2.8 21 5.0 38
Sender Area = 44, Breed
Type = Beef, Breed = Belgian
BlueCross}

4. {Receiver Area = 35, 7 6.7 46 6.3 6 0 0
SenderArea = 35, Breed
Type = Beef and Dairy,
AnimalAge ≤ 1yearold}

5. {Receiver PTI = 4, 33 1.4 27 5.1 29 0 29
Receiver Area = 14, Sender
Area = 13, Gender = female}

Table 5.13: Example of migrating CTS Frequent Patterns trends

Table 5.13 also shows other patterns that migrated and experienced changes of

trend types. The fourth example shows a pattern trend that was frequent from 2003

to 2005 but not frequent in 2006. Moreover, the distance values are considerably high

thus signifying that this pattern migration is an interesting pattern migration.

Table 5.14 shows a fragment of the pattern Migration Matrix for the CTS network.

Overall there are 100 trend clusters. The matrix contains the number of patterns that

migrated from Ci in Me to Cj in Me+1. As already mentioned these numbers are used

to determine the Q and C values for the proposed visualisation. The communities of

CTS trends identified by the hierarchical method are shown as islands in the output
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 . . . C100

C1 71 13 11 0 0 0 1 26 0 0 . . . 0

C2 10 6 13 0 1 0 0 0 0 2 . . . 1

C3 8 0 21 2 0 0 18 0 0 0 . . . 0

C4 0 0 0 3 0 3 0 0 0 0 . . . 0

C5 0 0 0 0 14 0 14 10 0 0 . . . 0

C6 0 0 0 0 2 0 1 0 0 0 . . . 0

C7 0 0 3 0 23 4 67 6 0 1 . . . 2

C8 0 2 0 0 1 2 6 5 3 0 . . . 0

C9 0 1 0 0 0 0 3 0 0 1 . . . 0

C10 0 3 0 1 1 0 0 1 0 7 . . . 1
...

...
...

...
...

...
...

...
...

...
... . . .

...

C100 0 0 0 0 0 0 1 0 0 0 . . . 7

Table 5.14: Fragment of the pattern Migration Matrix from M2003 node (cluster) to
M2004 for the CTS network dataset

produced using the Pattern Migration Visualisation module.

5.3.2 Deeside Insurance Quotation Pattern Migration

With respect to the Deeside Insurance network similar pattern migrations are identified

as those in the CTS dataset. Comparison of the trend clusters allowed for the identifica-

tion of changes in customer “quote request” habits. Table 5.15 presents some examples

of pattern migrations identified from within the Deeside Insurance dataset. For exam-

ple, the trend line representing the pattern {Fine ≤ 1000, Convict Code = SP, 41 ≤
Driver Age ≤ 50, 1996 ≤ Car Y ear Manufacture ≤ 2000} which was in node 43

(bottom right in Figure 5.9) in M2008 migrated to node 11 in M2009. This signifies,

in this case, that the pattern has changed from a trend with high support (frequency)

in September to a trend with high support in February and March. Another example

is the trend line for pattern {Fine ≤ 1000, Convict Code = SP, 41 ≤ Driver Age ≤
50, 2001 ≤ Car Y ear Manufacture ≤ 2005, Aggregator = Moneysupermarket}, this

was in node 35, trends with sharp increase of quote requests in April in M2008; and then

migrated to node 20 which describes trends that gradually increased from January to

April in M2009.

Table 5.16 presents a fragment of the pattern Migration Matrix from M2008 to

M2009. The total number of trend clusters in the matrix is 49. Recall that the values

in the matrix are used with respect to the Pattern Migration Visualisation module.

5.3.3 MAF Logistic Cargo Distribution Pattern Migration

Table 5.17 presents some examples of patterns that migrated from one SOM node

to another with respect to the MAF Logistic Cargo network. Thus, the pattern
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No. Frequent Patterns Node Dist Node
M2008 M2009

1. {Fine ≤ 1000, Convict Code = SP, 43 5.8 11
41 ≤ Driver Age ≤ 50,
1996 ≤ Car Y ear Manufacture ≤ 2000}

2. {Fine ≤ 1000, Convict Code = SP, 44 6.3 4
41 ≤ Driver Age ≤ 50,
1996 ≤ Car Y ear Manufacture ≤ 2000,
Aggregator = Moneysupermarket}

3. {Fine ≤ 1000, Convict Code = SP, 36 4.2 18
41 ≤ Driver Age ≤ 50,
2001 ≤ Car Y ear Manufacture ≤ 2005}

4. {Fine ≤ 1000, Convict Code = SP, 35 2.2 20
41 ≤ Driver Age ≤ 50,
2001 ≤ Car Y ear Manufacture ≤ 2005,
Aggregator = Moneysupermarket}

Table 5.15: Example of migrating Deeside Insurance Frequent Patterns trends

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 . . . C49

C1 120 0 0 0 26 36 20 92 34 0 . . . 0

C2 0 0 0 0 0 0 0 0 0 0 . . . 1

C3 0 0 0 2 4 4 6 46 46 2 . . . 0

C4 70 0 16 22 4 10 40 100 36 6 . . . 0

C5 16 0 0 24 10 4 16 10 0 0 . . . 0

C6 0 0 0 0 0 0 0 0 0 0 . . . 0

C7 140 0 0 8 16 40 100 10 10 0 . . . 2

C8 0 0 0 0 0 0 0 0 0 0 . . . 0

C9 36 0 40 0 0 36 92 30 28 0 . . . 0

C10 0 0 0 0 0 0 0 32 104 4 . . . 1
...

...
...

...
...

...
...

...
...

...
... . . .

...

C49 0 0 0 0 0 0 0 0 0 0 . . . 0

Table 5.16: Fragment of the pattern Migration Matrix from M2008 to M2009 for the
Deeside Insurance network dataset

{MYR50001 ≤ Shipment cost ≤ MYR100000, Receiver = 9 KOD,Sender City =

Batu Kentonmen} was in node 31, representing trends with high support in July, in

M2008; and moved to node 5, representing trends with high support in June, in M2009.

The pattern {Receiver City = Sibu, Sender City = Batu Kentonmen, Sender =

91DPO} was in node 34, which represents a fluctuating trend with high support in

April, July and October in M2008; and migrated to node 4, representing trends with

high support in June and September. Table 5.18 presents a fragment of the pattern

Migration Matrix for the data in the MAF Logistic Cargo network (the total number

of trend clusters in the matrix is 49).
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No. Frequent Patterns Node Dist Node
M2008 M2009

1. {Receiver City = Kuching,Receiver = 5 KOD, 28 1 21
Sender City = Batu Kentonmen, Sender = 91DPO,
Logistic item = Ordnance items}

2. {MYR50001 ≤ Shipment cost ≤MYR100000, 31 4.5 5
Receiver = 9 KOD,Sender City = Batu Kentonmen}

3. {Receiver City = Sibu, Sender City = Batu Kentonmen, 34 4.5 4
Sender = 91DPO}

Table 5.17: Example of migrating MAF Logistic Cargo Frequent Patterns trends

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 . . . C49

C1 0 0 3 0 0 0 0 0 1 0 . . . 0

C2 0 0 0 0 0 0 0 0 0 0 . . . 0

C3 0 0 3 0 0 0 0 0 1 0 . . . 0

C4 0 0 0 0 0 0 0 0 0 0 . . . 0

C5 0 0 0 0 0 0 0 0 0 0 . . . 0

C6 0 0 0 0 0 0 0 0 0 0 . . . 0

C7 1 0 0 0 0 0 0 0 0 0 . . . 0

C8 0 0 0 0 0 0 0 0 0 0 . . . 0

C9 0 0 0 0 0 0 0 0 0 0 . . . 0

C10 0 0 0 0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
... . . .

...

C49 1 0 0 0 0 0 0 0 0 0 . . . 0

Table 5.18: Fragment of pattern Migration Matrix from M2008 to M2009 for the MAF
Logistic Cargo network dataset

5.3.4 Experimental Analysis of Pattern Migration with Constraints

For completeness Table 5.19 presents some examples of CTS trends using Con-

straint 1 {Breed Type = Beef}, that migrated from SOM M2003 to M2006, For

example, the trend line representing the frequent pattern: {Receiver Area =

24, SenderLocationType = Algricultural holdings,Breed Type = Beef,Breed =

Chianina} was in node 47 in M2003 and moved to node 15 in M2004, but then mi-

grated to node 8 in M2005 and node 48 in M2006. Chianina is an Italian breed of cattle

raised mainly for beef. As noted previously the distance traveled is considered to be

an indicator of “interestingness”.

Table 5.20 shows examples of Deeside Insurance trends (representing frequent pat-

terns), with Constraint 1 DriverAge = {24 : 40}, that have migrated from SOM M2008

to M2009. For example, the trend line representing the pattern: {EngineSize = {≤
1000}, CarType = Nissan,DriverAge = {24 : 40}} was in cluster node 5 (middle top

in Figure 5.18) in M2008, but moved diagonally to node 49 in M2009. The trend shape
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Frequent Patterns Node Dist Node Dist Node Dist Node
M2003 M2004 M2005 M2006

{ReceiverArea = 24, 47 5.66 15 1.0 8 7.07 48
SenderLocationType = Algricultural
holdings,Breed = Chianina}
{ReceiverArea = 24, 26 0.0 26 4.24 2 2.82 18
SenderLocationType = Algricultural
holdings,Breed = LinconRed}
{ReceiverArea = 24, 26 0.0 26 3.60 9 3.60 26
SenderLocationType = Algricultural
holdings,BreedType = Beef}
{ReceiverArea = 24, 47 5.66 15 1.0 8 7.07 48
SenderLocationType = Algricultural
holdings,BreedType = Beef,
Breed = Chianina}

Table 5.19: Examples of migrating CTS trends with constraints (Dist = distance value)

Frequent Patterns Node Dist Node
M2008 M2009

{EngineSize = {≤ 1000}, 49 2.0 35
CarType = Toyota}
{EngineSize = {≤ 1000}, CarType = Toyota, 49 3.0 28
DriverAge = {26 : 30}}
{EngineSize = {≤ 1000}, 26 1.41 34
CarType = Nissan}
{EngineSize = {≤ 1000}, CarType = Nissan, 5 6.32 49
DriverAge = {24 : 40}}

Table 5.20: Examples of migrating Deeside Insurance trends with constraints (Dist =
distance value)

has changed significantly so it may be marked as an interesting pattern.

5.3.5 Pattern Migration Clustering Summary

From the above reported evaluation it can be seen that the Pattern Migration Clustering

module can detect changes in trend clusters and migrations of frequent pattern trends

in a given sequence of SOM trend line maps. Even though it is possible to observe how

frequent pattern trends migrate, the interpretation of the Migration Matrices is still

difficult. The intuition is that the proposed visualisation module can provide further

analytic support. The evaluation of this module is presented in the next section.
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5.4 Experimental Analysis of The Pattern Migration Vi-
sualisation Module

Recall that the Pattern Migration Visualisation module is aimed at illustrating the

frequent pattern migrations that occur in a pair of SOM maps. The visualisation

comprises a node and link network map where the nodes represent clusters and the

links represent migrations between clusters. The direction of a link between a pair of

trend cluster nodes shows a migration from a node in Me to a node in Me+1. The

size of a node in a network map indicates the number of patterns at the node. The

evaluation of this module used the output of the three sets of frequent patterns and

trends from the CTS, Deeside Insurance and MAF Logistic Cargo networks used in

the evaluation of the Pattern Migration Clustering module, namely: (i) CTS patterns

and trends using a 0.5% support threshold, (ii) Deeside Insurance patterns and trends

using a 5% support threshold and (iii) MAF Logistic Cargo patterns and trends using

a 5% support threshold.
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Figure 5.20: Pattern Migration Visualisation module run time (seconds) for the CTS,
Deeside Insurance and MAF Logistic Cargo networks

Figure 5.20 shows the computational run time required by the Pattern Migration

Visualisation module. The processing of the CTS network required a longer time as

the number of patterns and trend clusters is greater than for the Deeside Insurance

and MAF Logistic Cargo networks. Moreover, CTS has four episodes compared to the

other networks which only have two episodes. The analyses are described in turn in the
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following sub-sections. Note that the experiments directed at the Pattern Migration

Visualisation module did not include experiments using constraints. The section is

summarised in Sub-section 5.4.4.

5.4.1 GB Cattle Movement Pattern Migration Visualisation and An-
imation

With respect to the CTS application, the domain users may be particularly interested

in how patterns and trends change with time (from one episode to the next) because

the movement of cattle is a factor with respect to the spread of bovine diseases. Using

the information presented in Table 5.14 the proposed extension of Visuset was used

to generate the network maps shown in Figures 5.21 and 5.22. These maps feature

islands of trend clusters which can be viewed as communities in the network. This is

determined using the Q values that are calculated using information of the form given

in Table 5.14. The migration of CTS patterns from: episode 2003 to 2004, episode 2004

to 2005 and episode 2005 to 2006; are shown in Figures 5.21, 5.22 and 5.23 respectively.

In all cases the Min-Rel threshold was set to 0.2.

Inspection of Figure 5.21 shows that the visualisation displays 45 nodes out of a

maximum of 100, thus only 45 nodes included links with a C-value greater than 0.2 (and

are therefore deemed interesting). The circular pattern in which the nodes are arranged

on completion of the spring model algorithm is typical of the display produced (initially

all nodes are placed along a diagonal). Several islands are displayed, determined using

the Newman method described previously, including a large island comprising eight

nodes. The nodes are annotated with an identifier (the “from” SOM node number)

and the arcs with their C-value number. From the map, there are a relatively large

number, 30 in all, of self-links; excluding self-links there are only 18 links indicating

that, with respect to the 2003 and 2004 episodes, the patterns are fairly constant.

However, the map does illustrate that (for example) patterns have migrated from node

34 to node 44, and from node 44 to 54. Referring back to Figure 5.5, an observation can

be made that the nodes hold a fairly similar shape of trend line which have consistent

numbers of cattle movements throughout the 12 month time stamps.

Figure 5.22 shows the migration of patterns from episode 2004 to episode 2005.

Comparing this map with the previous, 2003-2004 map, it can be noted that more

“islands” have appeared indicating more pattern migration communities. For example,

comparison of the maps shows that, whereas between 2003 and 2004 patterns were

migrating from node 44 to 54, in 2004 to 2005 there was no such migration. To give

one more example, in the 2003 and 2004 map, patterns migrated from node 31 to 21;

then in 2004 to 2005 they moved back from node 21 to 31. It should also be noted that

node 34 is not displayed in the 2004-2005 map because the C-values for its associated

links are all below the Min-Rel threshold value of 0.2 (in the 2003-2004 map the C-
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Figure 5.21: Visuset visualisation (map) indicating migration of CTS patterns from
episode 2003 to episode 2004

value displayed for node 34 was only 0.2 so this is not surprising). When the animation

provided with Visuset was run (although this cannot be illustrated here), it showed that

node 34 disappears half way through the animation, thus indicating that the C-value

is about 0.19.

The visualisation of pattern migrations from 2005 to 2006 is shown in Figure 5.23.

Comparing all three maps, this last map has the least number of nodes, 29 nodes in

total, that have pattern migrations with C-values of above 0.2. In general, as might be

expected, most of nodes in this map have appeared in the previous maps, 2003-2004

and 2004-2005. For example, in the map 2003-2004, there are migrations of patterns

with respect to nodes 11, 21 and 31; but only nodes 21 and 31 formed an island whereas

node 11 showed a self-link pattern migration. In the maps 2004-2005 and 2005-2006,

these 3 nodes are connected showing pattern migrating between them. The difference

is in the direction the patterns moved. In the map 2004-2005, patterns move from node
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Figure 5.22: Visuset visualisation (map) indicating migration of CTS patterns from
episode 2004 to episode 2005

11 to node 21 and from node 21 to node 31; whereas in the map 2005-2006, the direction

of pattern migration is in the opposite direction. Additionally, node 41 is added to the

island because a sufficient number of patterns moved from node 41 to node 31 in the

following year.

5.4.2 Deeside Insurance Quotation Pattern Migration Visualisation
and Animation

Studying the temporal change in the Deeside Insurance patterns and trends may provide

useful information on how to improve Deeside Insurance’s marketing strategies. In this

case Visuset generates the network map using information of the form given in Table

5.16. Figure 5.24 shows the Deeside Insurance pattern migrations from 2008 to 2009.

It should be recalled that the number of Deeside Insurance network data records is far
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Figure 5.23: Visuset visualisation (map) indicating migration of CTS patterns from
episode 2005 to episode 2006

less than for the CTS network. Therefore there are only 13 nodes, out of a total of

49, that have migration patterns with C-values of above 0.2 and thus only 5 islands

of pattern migration communities are formed. Only nodes 19, 21 and 35 have self-link

pattern migrations. Inspection of the data displayed in Figure 5.24 indicates that in

this case the patterns migrated to similar types of trend cluster. For example, patterns

from node 10 moved to node 9, with a C-value of 0.33, in the following year. Referring

back to the prototype map in Figure 5.9, nodes 10 and 9 can all be categorised as trend

types with high support in the first quarter of the year (between Jan to April). Also,

from the map, it can be concluded that node 24 received pattern migrations from two

nodes, 30 and 31, from the previous year; all three trend cluster nodes have consistent

support throughout the year. The same observation can be made with respect to the

rest of the islands in the 2008-2009 map, the patterns tend to migrate to adjacent trend

clusters nodes (see Figure 5.9).
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Figure 5.24: Visuset visualisation (map) indicating migration of Deeside Insurance
patterns from episode 2008 to episode 2009
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5.4.3 MAF Logistic Cargo Distribution Pattern Migration Visualisa-
tion and Animation

The MAF Logistic Cargo pattern migration visualisation may provide useful informa-

tion for (say) inventory management and distribution scheduling. Based on Table 5.18,

the Q and C values are determined to generate the network map. Figure 5.25 shows

the migration of patterns from 2008 to 2009 with respect to the MAF Logistic Cargo

network. From the map it can be seen there are only 25 nodes out of a total 49 cluster

nodes that have pattern migrations with C-values above 0.2. None of the nodes shown

in the map has a self-link pattern migration, but 7 islands of pattern migration com-

munities have been identified. The largest island consists of 12 nodes. Inspection of the

map indicates, for example, that patterns migrated from nodes 23 and 24, representing

trend clusters with high support in September (refer to Figure 5.13), to node 26, a

trend cluster with high support in March, Jun, July, September and October. Some

patterns in node 24 also moved to node 10 which is a trend cluster with high support

in September and November. The pattern migrations occurring in this island indicate

distinctive changes of the trend cluster types. For example, the patterns in node 15

have a trend with high support in January, July, September and November in 2008

but migrated to node 34 with a trend of high support between April, May, July and

October in 2009. Thus it could be concluded that the distribution of logistic items is

not based on seasonal considerations, but may instead depend on the need or budget of

MAF offices. Alternatively the migration may have occurred as a result of some change

in logistic procedure/policy.

5.4.4 Pattern Migration Visualisation Summary

The Pattern Migration Visualisation module provided further analytical support to

allow users to investigate pattern migrations between SOM maps that have been gen-

erated using the Trend Grouping module. Using the animation facility, the migration of

patterns can be illustrated and changes of trend type associated with temporal patterns

highlighted. The above discussion, focusing on the migration of particular patterns, in-

dicates that the proposed visualisation mechanism provides a useful tool for decision

makers.

5.5 Summary

In this chapter, results from a number of experiments undertaken to analyse the Fre-

quent Pattern Trend Analysis element of the proposed framework have been reported.

The analysis was considered in terms of the Trend Identification, Trend Grouping,

Pattern Migration Clustering and Pattern Migration Visualisation modules. The ex-

periments were conducted using three social networks: (i) CTS, (ii) Deeside Insurance
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Figure 5.25: Visuset visualisation (map) indicating migration of MAF Logistic Cargo
patterns from episode 2008 to episode 2009
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and (iii) MAF Logistic Cargo networks.

The analysis of the Trend Identification module showed that a large number of fre-

quent patterns and trends are discovered using the TM-TFP algorithm tending their

interpretation to be difficult. The discovered trends are thus grouped using the Trend

Grouping module, based on SOM technology. The module generated prototype maps

and trend line maps to classify the types of trends that exist for all discovered patterns.

From this experimental analysis, the Trend Identification and Grouping modules high-

lighted interesting information which was conjectured to be beneficial to decision mak-

ers. The proposed use of constraints further assisted decision makers in that it allowed

them to “focus in” on particular types (clusters) of trends. The Pattern Migration

Clustering and Pattern Migration Visualisation modules provided additional support

for the analysis of the network data. The evaluations conducted with respect to the

Pattern Migration Clustering module indicated that it provided for the identification

of pattern migrations between trend clusters and pattern migration communities. The

Pattern Migration Visualisation module then allowed users to view pattern migrations

between pairs of SOM maps. The animation facility included in the visualisation mod-

ule allowed for the demonstration of how trend configurations change with time.

In the following chapter, the prediction element of the proposed framework is pre-

sented to illustrate how frequent patterns (for example information or events) may be

predicted to “travel” across a network. The prediction modules use the patterns and

trends discovered by the Trend Identification module evaluated in this chapter.
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Chapter 6

Prediction Modeling

Using modern ICT infrastructures social networks may change rapidly. The static “snap

shot” node and link model of a social network describes the structure of a network and

gives an indication of how information moves across the network (both directly and

indirectly) at a given instance of time. However, such static analysis does not necessarily

present a “true” picture. The proposed mechanisms described in the previous chapter

to support dynamic analysis of networks can be argued to go some way to presenting

a better picture. The work described in this chapter extends the capabilities provided

by the mechanisms described in the foregoing chapter. Regardless of the type of social

network under consideration (online social network, business community, file sharing

systems, co-authoring framework, etc) the prediction of how an activity or event may

spread across a network can clearly provide useful information with respect to many

applications.

This chapter describes how the frequent patterns and trends discovered using the

previous described modules may be used for prediction modeling. The work described

in this chapter is motivated by a desire to use the discovered patterns and trends to

predict the “percolation” of activities in networks. The work is also influenced by

the concept of causal chains in networks [103, 110] which in turn suggests the use of

the trends associated with identified frequent patterns as probabilistic indicators with

which to determine the frequency of traffic percolating across a network.

This chapter thus presents the second part of the proposed Predictive Trend Min-

ing Framework (PTMF). This second part comprises two modules: (i) the Percolation

Matrix module and (ii) the Visualisation module. Collectively these two modules are

referred to as the Prediction Modeling (PM) modules. The Percolation Matrix module

operates as follows: (i) filter a set of frequent patterns of interest, and (ii) calculate the

probabilities of information or events traveling from one node to another. The Visual-

isation module is used to illustrates the result from the Percolation Matrix module in

the form of probability maps generated using a further extension of the Visuset software
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system coupled with Google Earth1; the latter is so as to present the probability maps

in the context of geographical locations. These two modules were incorporated into

the framework. A drill down mechanism is also proposed so that users can focus their

investigation of how information percolates across a selected subset of nodes in a given

network. The conceptualisation and nature of both modules, and the associated evalu-

ation, are described in detail in this chapter. The evaluation was again conducted using

the GB cattle movement dataset that forms the central element of the Cattle Tracing

System (CTS) in operation in England, Wales and Scotland. The CTS network was

selected because: (i) it is the largest dataset considered in this thesis, and (ii) it was

envisaged that the nature of its complex star form (as described in Chapter 3) would

provide more interesting probability maps.

The rest of this chapter is organized as follows. In Section 6.1 some background

on types of patterns that are required for use with the proposed prediction modeling

is presented. Section 6.2 discusses the Percolation Matrix in detail. Then Section 6.3

describes the visualization module. In Section 6.4 the application of the “drill down”

mechanism, that allows users to focus on a specific group of patterns based on their

spatial attributes, is presented. Section 6.5 presents the results from the experimental

analysis of the two modules that make up the prediction element of the PTMF. Finally,

in Section 6.6 the chapter is concluded with a brief summary, some discussion and

conclusions.

6.1 Background

The proposed prediction modeling mechanism is founded on the frequent patterns and

trends generated using the TM-TFP algorithm in the Trend Identification module. As

described in Chapter 4, the frequent pattern trends are identified from the analysis

of a sequence of social network datasets. Recall that each frequent pattern trend is

described in terms of its temporal occurrence counts (support values). This section

comprises two sub-sections. Sub-section 6.1.1 defines the nature of the patterns that

may be processed using the PM modules. Sub-section 6.1.2 presents an overview of the

proposed PM process.

6.1.1 CTS Frequent Patterns and Trends

If we wish to model how information percolates across a network based on identified

frequent patterns that exist in that network the patterns of interest must clearly include

information about start and end locations and the nature of the traffic. From the Trend

Identification module introduced in Chapter 4, a large number of frequent patterns and

trends may be discovered from a given social network. Two types of attribute were

1http://www.google.co.uk/intl/en_uk/earth/index.html
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considered:

1. Node Attributes (Location Attributes): Attributes associated with a node, in

the case of the CTS application, examples include animal holding area IDs and

animal holding area types.

2. Link Attributes (Movement Attributes): Attributes associated with links, in the

case of the CTS application examples include breed, animal age and gender.

These two categories of attribute give rise to the concept of Location (Node) Patterns

and Movement (Link) Patterns. Location patterns describe some aspect associated

with locations. Movement patterns describe some aspect of movement. We can also

identify Combination Patterns, patterns that comprise both location and movement

attributes. For the purpose of the proposed prediction modeling we are interested in

“traffic flow” between nodes, thus the type of patterns we are interested in are combi-

nation pattern that comprise location attributes associated with two different locations

(nodes) and movement attributes concerned with the flow of activity between these

locations. Therefore, for prediction purposes, the network needs to be conceptualised

as comprising combination patterns of the form:

{LfromLocation, M , LtoLocation}

where LfromLocation is a specific value associated with a “from location” attribute,

LtoLocation is a specific value associated with a specific “to location” attribute, and M

is some subset of the global set of movement attributes. In a complex star network the

set of available values for the to and from location attributes are normally identical,

in the case of a simple star network there is only one to location value and many from

location values. The set M may consist of one or more attributes (|M | ≥ 1). With

respect to the work described in this thesis the LfromLocation and LtoLocation attribute

values were taken from the set of all possible values describing a set of possible location

areas each identified by a unique number, and each defined in terms of a grid square

delimited by an easting and northing coordinate system. An example is given in Figure

6.1 which features 25 grid square areas, {1, 2, 3, 4, 5, . . . , 25}, each measuring 50 by

50km. Each grid square may hold zero, one or more cattle holding areas. The usage

of an attribute such as the Location Area attribute was found to be desirable because:

(i) little meaning (at least in the context of prediction mining) can be attached to

predictions focused at the node level (a higher level of granularity is required) and (ii)

it has the effect of reducing the overall number nodes by creating super-nodes (each

describing a locality). Note also that the resulting network can be described in a tabular

form. An exemplar of a combination pattern of the above form is {Sender Area = 12,

Breed = Friesian, Number Cattle Animal ≤ 5, Receiver Area = 14}, a pattern which
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describes movements of cattle of breed Friesian in a quantity greater or equal to 5, from

grid location 12 to grid location 14.

Figure 6.1: Simplified view of a map presenting 25 grid square locations

Each relevant combination pattern will have an associated trend line defined in

terms of a set of support values. The support counts are indicators of the frequency of

traffic between the two nodes. This in turn may be interpreted as a probability measure

indicating the likely traffic flow between the two indicated locations. The M attributes

may also be used to filter specific types of traffic of interest.

6.1.2 Prediction Modeling overview

Figure 6.2 gives a block diagram describing the proposed prediction modeling process.

The process takes as input the identified frequent pattern trends. These trends are then

filtered so that only the desired combination patterns remain as directed by the users’

interests. A set of Percolation Matrices are then generated (this is described in the

following section). A Percolation Matrix is formed by rows and columns representing

the LfromLocation and LtoLocation values, with the intersection of a row and a column

holding the probability of traffic flow between the indicated nodes. The Percolation

Matrix module produces a set of n percolation matrices (one per time stamp) indicating

the probability of traffic flows from one node to another node. The final stage of the

PM process is the Visualisation module. The Visualisation module can generate two

types of map: (i) “probability maps” generated using a further extension of the Visuset

software system, and (ii) geographical maps using Google Earth.

6.2 Percolation Matrix Module

In this section, the proposed Percolation Matrix Module is introduced. The module

is intended to provide support for network analysis by indicating the probability of
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Percolation Matrix Module

1 2 3 4 5 6

1 0.00 0.00 0.00 0.01 0.00 0.00

2 0.00 0.00 0.00 0.01 0.00 0.00

3 0.00 0.01 0.00 0.00 0.00 0.00

4 0.00 0.00 0.01 0.01 0.00 0.00

5 0.00 0.00 0.00 0.04 0.00 0.00

6 0.00 0.00 0.00 0.01 0.03 0.00

Patterns and Trends

Patterns and trends 

are identified using the 

Trend Identification 

module
Filter

{93}  {138, 156, 178, 219, 207, 205}
{93 1}  {138, 156, 177, 202, 164, 160}
{93 54}  {0, 0,  0, 16, 25, 15}
{93 65}  {0, 0, 0, 0, 0, 25}
{94 1} {112, 109, 102, 136, 101,  111}

Set of 
combination 

frequent 
patterns (FP)

Probability and Percolation 
Matrices of FP

Visualisation Module

Probability Maps using 
Visuset

Geographical map using 
Google Earth

Figure 6.2: Block Diagram Indicating The Prediction Modeling (PM) Process

information or events traveling between nodes in a network. This information can then

be used to determine the probability of traffic flow between three or more nodes. As

already noted in the work described in this thesis, the probability is derived from the

identified trend data.

a

c

d

b

0.1

0.1
0.1

0.1

Figure 6.3: Conceptual Example of the Percolation of Information and Events in a
network fragment

In Figure 6.3 an example of a snapshot of the nodes and links in a network fragment
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is presented. The figure shows a network of four nodes labeled {a, b, c, d}, connected by

four links. The links are annotated with the probability of traffic flowing along this link

at the given time stamp. This information can also be interpreted as the probability

of a node being directly connected to another node. Similarly, combinations of such

probabilities can indicate indirect connections between nodes. Thus, referring to Figure

6.3, the probability that node a is connected to node b is given as 0.1. Thus there is

a possibility of 0.1 that some piece of information or event occurring at node a will

travel to node b. Similarly the probability that an event occurring at node a will be

transmitted to node d is 0.1× 0.1 = 0.01.

This section consists of two sub-sections describing the Percolation Matrix module.

In Sub-section 6.2.1, the process of filtering frequent pattern trends is described, then

Sub-section 6.2.2 explains the process of transcribing the probabilities associated with

a set of combination patterns to form the percolation matrix.

6.2.1 Filtering The Frequent Patterns

The Percolation Matrix module starts with the process of filtering frequent patterns and

trends to be used in the PM. As mentioned in Sub-section 6.1.1, the frequent patterns

of interest are combination patterns of the form: {LfromLocation, M , LtoLocation}. The

process of generating the set of combination patterns of interest (FP ) is dependent on

the interest of the domain user. Typically the selection is based on some constraints

to be applied so as to filter the global set of movement patterns. For example if M =

{m1,m2,m3} and the set of location values is {a, b, c, d} then the set of combination

patterns might be:

FP = {{a,m1,m2,m3, b},
{a,m1,m2,m3, c},
{b,m1,m2,m3, d},
{c,m1,m2,m3, d}}

The set FP and the associated trends are then used as input to the Percolation Matrix

module.

6.2.2 Probability and Percolation Matrices

The second part of the Percolation Matrix module comprises a two stage processes: (i)

determine the probability of link traffic in the set FP , and (ii) construct the desired

n percolation matrices for FP . As mentioned earlier, the trends for each fpi in FP

are used to compute the probability of link traffic. Then given a n time stamp trend,

n percolation matrices will be generated. A percolation matrix consists of a N × N
elements, where N = {n1, n2, . . . , nn} is the number of possible location pattern values.

The magnitude ofN is dependent on the number of distinct LfromLocation and LtoLocation
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contained in FP . The intersection of a row and column in the matrix indicates the

probability value of associated link traffic.

Algorithm 6.1: The Probability and Percolation Matrix

input : FP = Set of Frequent combination patterns, set of Trends
output: n Percolation Matrices generated from FP

1 for ∀fp ∈ FP do
2 Extract probability (p) of each fp from its associated trend;
3 end
4 for k ← 1 to | Trends | do
5 Construct a matrix of size N ×N);
6 for i← 1 to | FP | do
7 Insert pi into the matrixk at the appropriate location;
8 end

9 end

Algorithm 6.1 describes the process of extracting the probability of information

movement and building the percolation matrix to facilitate the desired Prediction Mod-

eling. The algorithm first extracts the probability of each pattern fp in FP (Line 2).

The support values associated with each time stamp n defines the probability of traffic

flowing between nodes. Thus all support values for the selected frequent patterns are

converted into a probability value (p). Therefore, given a specific frequent pattern fpi,

conforming to some types of combination pattern, pi for fpi is defined as:

pi =
support(fpi)∑

fpi

(6.1)

Thus, p1 + p2 + . . .+ pn = 1.

Once the probability for all fp has been extracted, the algorithm constructs the

percolation matrix (Line 3). As already noted, the size of the matrix is dependent on

the number of available values for LfromLocation and LtoLocation. Then the probabilities

of traffic associated with all fp are inserted into the matrix. The process repeats until

all n percolation matrices are constructed. Table 6.1 shows an example of the output

of Algorithm 6.1 with respect to the network fragment present in Figure 6.3. These

percolation matrices are then used as the input to the Visualisation module described

in the next section.

From/To a b c d

a 0 0.1 0.1 0

b 0 0 0 0.1

c 0 0 0 0.1

d 0 0 0 0

Table 6.1: An example of a Percolation Matrix using the network fragment given in
Figure 6.3
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6.3 Visualization Module

The Visualisation module includes two types of visualisation tool, both directed at

illustrating the content of the percolation matrix.

1. The Visuset Prediction Map Tool: A customized version of Visuset that

illustrates the way traffic is likely to flow across a network (Sub-section 6.3.1).

2. The Geographical Map Tool: A presentation tool that produces a Google

Earth “overlay” (Sub-section 6.3.2).

6.3.1 The Visuset Prediction Map Tool

The aim of the Visuset tool is to demonstrate, in a clear and straight forward manner,

how information travels across a given network. As noted previously, Visuset is a “2-D

drawing area” visualisation software system that displays nodes and node communities

using a Spring Model [10]. The customised Visuset system provides an interpretation

of a probability matrix in the form of a probability map that illustrates a given node and

link structure as shown in Figure 6.3. The maps highlight which nodes are connected

directly (and, by extension, indirectly) to other nodes using “weighted” links. The

weightings are determined from the probabilities contained in the generated percolation

matrices. The configuration of Visuset used for the purpose of prediction modeling is

similar to the configuration of Visuset used in Chapter 4. However, in this case, the

numbers of patterns in each node are ignored as the significant information to be

displayed are location nodes, traffic links and probability values from the percolation

matrices.

As mentioned earlier, the extension of Visuset includes a mechanism to identify

communities of nodes in the network. However, using the percolation matrix it is

straightforward to identify nodes that are connected together as this information can

be extracted directly from the matrix. Thus, the probability maps illustrate groups of

nodes that are connected together which, in the same manner as described previously

in chapter 4, are depicted as “islands”. From the generated maps, the following can be

identified:

1. Paths describing how information or events may travel between nodes (in one

“step”). In the proposed PM, a one step percolation is defined as a direct link

between a pair of nodes, a and b.

2. Probability values describing the likelihood that information may travel between

a particular pair of nodes. The probability values can also be used to calculate

the probability of information flows encompassing two or more steps. A two

steps percolation refers to movement between two pairs of connected nodes. For
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example, in Figure 6.3, movement patterns may percolate from node a to node d

through node c. We may also be able to identify three and four steps percolations

(n-step percolations). These types of percolation are collectively described as

“complex” connections.

3. Communities of nodes that are connected together.

6.3.2 The Geographical Map tool

The Geographical Map tool is directed at providing a Google Earth overlay that relates

the prediction map (introduced above) to actual geographic locations. Google Earth is

sometimes referred to as a “virtual globe” that allows users to “fly” and explore 3-D

images of the surface of the earth. Previously known as Earth Viewer 3D, what we

now know as Google Earth was created by Keyhole Inc. Google acquired Google Earth

in 2004. There are a number of reports where researchers have utilised Google Earth.

For example Honjo et al. [54] proposed a landscape visualisation system using Google

Earth to act as a practical and low cost landscape simulation tool. Another example,

Multigesture.net, introduced the concept of Earth Friends, a free Facebook application

for locating “friends” using Google Earth [2].

In the context of the work described in this thesis, Google Earth is used to highlight

geographical locations described by the value set for LfromLocation and LtoLocation. An

Earth imagery (map) Google Earth overlay can be implemented using the Keyhole

Markup Language (KML). KML is the file format that is used to layout geographic

data in the “earth browser” used by both Google Earth and Google Maps. KML uses

an XML style notation which uses a tag-based structure with nested elements and

attributes. The elements in KML allow landmarks, grid lines, labels and so on to be

placed over the earth imagery provided by Google Earth. More details concerning KML

can be found in [127].

With respect to the work described in this thesis the process of customising the

KML file is very specific to the nature of the node patterns discovered within a given

social network. This is because the KML source will require the terrestrial coordinates

(latitude and longitude) of the LfromLocation and LtoLocation values. Thus, each gen-

erated probability map will have an individual customised KML file associated with

it.

6.4 Drilling Down

It was considered useful to also allow users to “drill down” in a specific geographic

area so that a more detaile view can be provided. This was achieved by providing a

facility to allow users to dynamically change the location area grid size (set at 50km
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by default). The effect is achieved by introducing a sub-division of a location area into

sub-areas.

To illustrate the drill down method, some node patterns generated from the CTS

network will be used. Thus if we select the location areas {127, 128, 148, 149} we can

drill-down to produce 16 new sub-areas (nodes). If we consider location area (node

ID) 127 this may be interpreted as representing four sub-areas which we might name:

{127(SW), 127(SE), 127(NE), 127(NW)}. To identify the trends in these new areas

the process describing in Chapter 4 will need to be repeated. These identified patterns

are then the input for a repeat of the PM process. It is also possible to repeat the drill

down process to an even smaller grid size for further investigation of a specific location

area.

6.5 Experimental Analysis of The Prediction Modeling

This section describes the experimental analysis of the two PM modules described above

(the Percolation Matrix module and the Visualisation module). The CTS network

dataset was used for the evaluation. Several combination patterns were selected as input

to the PM tasks. The combination patterns are filtered using 3 different constraints.

The evaluation started with the generation of appropriate percolation matrices, the

results were then used by the Visualisation module. Most of the experimental analysis

was undertaken using 50km location areas each defined by a unique numeric identifier,

the complete set of numeric identifiers then described the set of values from which the

values for LfromLocation and LtoLocation were drawn. The identifiers we also used as

the node identifiers. To illustrate the “drill down” facility each 50km grid square was

subdivided into 25km sub-grid squares (to allow for observation of cattle movements in

more detail). Note that only selected examples of the generated percolation matrices

and visualizations can be presented here.

Sub-section 6.5.1 describes the nature of the selected CTS combination patterns

used for the evaluation. Then Sub-section 6.5.2 reports on the analysis of the percola-

tion matrix generation process, whilst Sub-section 6.5.3 presents the evaluation of the

visualisation module. Lastly, Sub-section 6.5.4 considers the analyses of the drill-down

facility using a specific group of CTS node patterns.

6.5.1 Frequent Patterns Selection

Recall that the prediction modeling only operates using a specific set of combination

patterns, FP , comprised of to and from location attribute values and a movement

pattern of some kind. With respect to the evaluation described here using the CTS

network the following “permitted” combinations were adopted:
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1. Type 1 = {Sender Area, Animal Age = allAnimal Age sub patterns,

Breed = all Breed sub patterns,

Number Animals Moved = all Number Animal Moved sub patterns,

Receiver Area}.

2. Type 2 = {Sender Area,Number Animals Moved ≤ 5, Receiver Area}.

3. Type 3 = {Sender Area,Breed = Luing,Number Animals Moved ≤ 5,

Receiver Area}.

where {Sender Area and Receiver Area} are location attributes and {Animal Age,
Breed, Number Animals Moved} are movement attributes associated with a move-

ment pattern. It is of course possible to identify alternative (application dependent)

combination patterns. As already noted the significance of combination patterns is that

they define movement between locations. The probability of a movement occurring is

then defined by the support counts for each pattern.

6.5.2 Percolation Matrix

This sub-section presents an analysis of the use of percolation matrices. With respect

to the CTS network used for the evaluation the number of time stamps considered was

12 (months) thus, the Percolation Matrix module produced 12 monthly percolation

matrices. A number of examples of the generated percolation matrices, using the above

Type 2 combination patterns, are considered in this sub-section. Figure 6.4 provides a

comparison of run times recorded when generating the percolation matrices.
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Figure 6.4: The Percolation Matrix run time values (seconds) comparison

The Percolation Matrix module commences by extracting the probability values

from the trends for each fpi in FP . Table 6.2 and 6.3 list some example probability
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(support) values for CTS Type 2 combination patterns, between January 2003 and

May 2003, associated with particular to and from location areas. The location areas

are identified by a subset of the available location area (node) IDs: {127, 128, 147,

148, 149, 168, 169, 187}. Table 6.4 provides the easting and northing details of the

location area/node IDs. From Table 6.2 and 6.3 it can be noted that most of the cattle

movements happen within the same location area grid square, however there are some

cattle movements that cross to adjacent grid squares, for example from node 127 to 128.

Thus, from Table 6.2, it can be deduced that if an event (for example the detection of

an animal disease) occurs at location area 127 it will be passed to the adjacent location

area of node 128 with a probability of 0.05, because of the support value associated

with the connecting link between the two nodes. This form of percolation is referred to

as a one step percolation. Likewise, in Table 6.3, if an event occurs in location area 147

it is likely that it will be transmitted within the same location area with a probability

of 0.03.

Sender Receiver Jan Feb Mar Apr May
127 128 0.05 0.06 0.05 0.05 0.05
147 147 0.09 0.08 0.09 0.08 0.07
148 148 0.07 0.07 0.07 0.07 0.07
149 149 0.03 0.02 0.02 0 0
168 168 0.05 0.05 0.05 0.04 0.04
169 169 0.04 0.04 0.05 0.04 0.04
187 187 0.03 0.03 0.03 0.03 0.02

Table 6.2: Sample of 2003 CTS Type 2 combination pattern Monthly Probabilities

Sender Receiver Jan Feb Mar Apr May
127 128 0.02 0.02 0.02 0.02 0
147 147 0.03 0.03 0.03 0.04 0.04
148 148 0.06 0.06 0.06 0.06 0.07
149 149 0.04 0.04 0.05 0.03 0.04
168 168 0.06 0.06 0.06 0.05 0.06
169 169 0.03 0.03 0.03 0.02 0.03
187 187 0.02 0 0 0 0

Table 6.3: Sample of 2004 CTS Type 2 combination pattern Monthly Probabilities

The next stage is to generate the n percolating matrices, an example fragment of

the percolation matrix generated using the CTS dataset is shown in Table 6.5. From

the matrix shown in Table 6.5, it can be observed that if an event occurs at location

area 127 it is likely to infect all holdings within this location area with a probability of

0.04, and infect location area 128 with a probability 0.02. Another example is that if

an event occurs at location area 128 it will infect other holdings in the same location
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Sender/Receiver
Areas

easting and northing (in meters)

127 easting (301000-350000) and northing (301000-350000)
128 easting (351000-400000) and northing (301000-350000)
147 easting (301000-350000) and northing (351000-400000)
148 easting (351000-400000) and northing (351000-400000)
149 easting (401000-450000) and northing (351000-400000)
168 easting (351000-400000) and northing (401000-450000)
169 easting (401000-450000) and northing (401000-450000)
187 easting (301000-350000) and northing (451000-500000)

Table 6.4: Definition of Example Location Area Grid IDs in Terms of Eastings and
Northings

area with a probability of 0.05, and infect location area 148 with a probability 0.02.

Since all these predicted events will occur as a result of a single link between two nodes

these are all referred to as one step percolations. In addition, it is possible to calculate

the likelihood that an event occurring at (say) location area 127 will percolate to (say)

location area 148. In this case the probability will be 0.0004 (the probability of node

127 infecting node 128 multiplied by the probability of node 128 infecting node 148,

thus 0.02× 0.02 = 0.0004) this is thus a two steps percolation.

From/To 127 128 147 148 149 168 169 187
127 0.04 0.02 0 0 0 0 0 0
128 0 0.05 0 0.02 0 0 0 0
147 0 0 0.03 0 0 0 0 0
148 0 0 0 0.06 0 0 0 0
149 0 0 0 0 0.04 0 0 0
168 0 0 0 0 0 0.06 0 0
169 0 0 0 0 0 0 0.03 0
187 0 0 0 0 0 0 0 0.02

Table 6.5: January 2004 Type 2 Percolation Matrix indicating the probability of an
event “percolating” from one location area to another in n step

Given the above it can be seen how the proposed Percolation Matrix module can

be successfully employed to identify how events may percolate across a network. This

understanding can be further enhanced using the proposed Visualization module. The

evaluation of this module is presented in the next section.

6.5.3 Visualisation of Prediction Modeling

This section presents the evaluation of the Visualisation module. The evaluation was

conducted by considering different types of probability map sequences: (i) monthly

probability map sequences and (ii) yearly probability map sequences. The first is
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considered in Sub-section 6.5.3.1 and the second in Sub-section 6.5.3.2. The selected

results presented in Sub-sections 6.5.3.1 are from between January and May 2003 for

CTS Type 1, Type 2 and Type 3 combination patterns. Whereas in Sub-section 6.5.3.2,

the results presented are for January 2003, 2004, 2005 and 2006. The rest of the

probability maps for CTS Type 1 and Type 2 between February and December 2003,

2004, 2005 and 2006 can be found in Appendix A to H.

6.5.3.1 Evaluation of Monthly Prediction Modeling

So as to evaluate the analytical support provided by the monthly probability maps all

three identified types of combination pattern were considered in turn.

Figure 6.5: January 2003 Type 1 Combination Patterns Probability Map

Type 1 CTS combination pattern ({Sender Area,Animal Age =

all Animal Age sub patterns,Breed Type = all Breed Type sub patterns,

Number Animal Moved = all Number Animal Moved sub patterns,Receiver Area})
were considered first. Figures 6.5, 6.6, 6.7, 6.8 and 6.9 show the probability maps

generated for a sequence of five time stamps covering the period from January to May
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Figure 6.6: February 2003 Type 1 Combination Patterns Probability Map

2003. Note that, in all of the probability maps LfromLocation and LtoLocation values

are used as the node labels. The links describe Type 1 movement patterns. From the

maps it can be noted that most nodes in the maps have a probability of 0.01 that

movement will occur within the same node. The maps include a number of “islands” of

nodes that are connected together. The majority of these islands, in all the probability

maps, comprise the same node patterns. Nevertheless there are a few new nodes that

appeared or disappeared as the sequence progresses. In some case islands split into

new smaller islands in a following month in the sequence. For example, the island

comprised of location areas (nodes) {207, 226, 227, 245, 246} in the maps for January,

February and April 2003 was divided into two in March and May 2003. From the

maps it can also be seen that there is a possibility that an event might originate from

within several nodes that link to some receiver nodes, as in the case of location area

47 in Figure 6.5.

There were also indirect connections between nodes, such as between nodes 207 and
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Figure 6.7: March 2003 Type 3 Combination Patterns Probability Map

245 in the January, February and April 2003 maps. Thus, considering Figure 6.5, if an

event happens in location area 245, it could originate either from location area 227 in

a one step percolation (with probability of 0.01) or from location area 207 in two steps

percolation, with probability of 0.0001 (0.01×0.01 = 0.0001). In terms of the identified

islands if there is an event, for example an animal infection, it can be predicted that it

is likely to spread within the detected islands of areas, but less likely to spread outside

the islands.

The percolation matrices for CTS Type 2 combination patterns

({Sender Area,Number Animal Moved ≤ 5, Receiver Area}) were also used

to generate probability maps. Figures 6.10, 6.11, 6.12, 6.13 and 6.14 show the

probability maps for between January and May 2003. Again, most of the movement

patterns travel within the same location areas as the majority of nodes have self-links.

In addition, in all the maps, only a few links existed between the adjacent areas.

Inspection of all maps indicates that there is consistent link traffic from the location
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Figure 6.8: April 2003 Type 1 Combination Patterns Probability Map

area (node) 127 to the location area (node) 128, with probabilities of between 0.05

and 0.06 respectively. Figures 6.10 and 6.11 also show link traffic from location area

48 to location area 47 with a probability of 0.02. From Figure 6.14 it can also be

deduced that cattle movements may occur within three location areas. There is a

possibility that if an event, such as disease spread, happens in location area 148, that

it might originate from location area 127 or 128. Even though location area 127 is not

connected directly to 148, but it is connected in terms of a two steps percolation with

a probability of 0.001.

Further evaluation was conducted using Type 3 combination patterns

({Sender Area,Breed Type = Luing,Number Animal Moved ≤ 5, Receiver Area}).
The Type 3 combination pattern had more criteria with which to filter the CTS fre-

quent patterns, thus its usage resulted a smaller number of frequent patterns than in

the case of Type 1 and Type 2 combination patterns. Figures 6.15, 6.16, 6.17 and 6.18

showed the probability maps generated for the period from January to April 2003. In-

spection of the maps indicates that in this case all the cattle movements happen within

the same nodes (location areas). Therefore, it is easy to identify which location areas
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Figure 6.9: May 2003 Type 1 Combination Patterns Probability Map

have cattle movements with Breed = Luing (the Luing is a relatively rare beef cattle

bread, it is very hardy and usually found in upland areas).

As mentioned above a Google Earth tool was included in the framework to relate

areas to geographical locations. Most of the example probability maps presented above

have similar node patterns, thus for evaluation of the Google Earth tool only the CTS

Type 1 combination patterns between January and February 2003 are considered here.

To produce the desired map the identified probability map needed to be first translated

into a KML file, the result is as shown Figure 6.19. From the figure the relevant

location areas in relation to the overall geography of GB can be clearly identified, as

can the likely traffic flows between areas (indicated by red edges in the figure). The

figure also indicate the areas within GB where significant cattle farming activities are

concentrated. Discussion with domain experts has highlighted the usefulness of this

display.

138



Figure 6.10: January 2003 Type 2 Combination Patterns Probability Map

Figure 6.11: February 2003 Type 2 Combination Patterns Probability Map

6.5.3.2 Evaluation of Yearly Prediction Modeling

The Percolation Matrix module produces a sequence of percolation matrices which

can be visualized in the form of prediction maps. The mechanism can also be applied

to address “longitudinal” studies. Thus given a sequence of episodes (recall that we

divide our time stamps into episodes) we can compare time stampi in episode j with

time stampi in episode j + 1, and so on. The evaluation of longitudinal studies of

the form reported in this chapter is again focused on the CTS data. The reported

comparisons were made using Type 1 and Type 2 combination patterns. Figure 6.5,
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Figure 6.12: March 2003 Type 2 Combination Patterns Probability Map

Figure 6.13: April 2003 Type 2 Combination Patterns Probability Map

6.20, 6.21 and 6.22 show the cattle movements for the month of January with respect

to four consecutive episodes (2003, 2004, 2005, 2006) using the Type 1 combination

patterns ({Sender Area,Animal Age = allAnimal Age sub patterns,Breed =

all Breed Type sub patterns,Number Animal Moved =

all Number Animal Moved sub patterns,Receiver Area}). Again several is-

lands can be observed in the maps to show how nodes in areas are connected directly

(one step) and also indirectly (two steps). However, the yearly maps show slightly

different types of islands, in terms of the number of areas and also the direction of

links between them, demonstrating how the islands change over a number of years.
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Figure 6.14: May 2003 Type 2 Combination Patterns Probability Map

Figure 6.15: January 2003 Type 3 Combi-
nation Patterns Probability Map

Figure 6.16: February 2003 Type 3 Combi-
nation Patterns Probability Map

Inspection of Figure 6.20 indicates that in January 2004 there are more “complex”

connections between nodes. For example events within location area 127 could reach

location area 149 following two separate routes (via node 148, or via nodes 128 and

129), the first with a probability of 0.0002, the second with a probability of 0.000006.

Similarly, Figures 6.10, 6.23, 6.24 and 6.25 show yearly comparisons using Type 2

combination patterns {Sender Area, Number Animal Moved ≤ 5, Receiver Area} for

the month of January. Inspection of the figures shows that all the maps hold similar

results; most of the cattle movements happened within the same nodes. Nevertheless,

there are a few pairs of nodes that are connected by one step percolations.

Only the January 2004 map (Figure 6.23) features a two step link. There were
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Figure 6.17: March 2003 Type 3 Combina-
tion Patterns Probability Map

Figure 6.18: April 2003 Type 3 Combina-
tion Patterns Probability Map

movements that happen from within location area 127 to location area 148 with a

probability of 0.0004 (0.02× 0.02). Unlike the other islands on the map, if there is an

event that happens within location 47 this may be caused by an event either in the

location area 46 (with a probability of 0.02) or the location area 48 (with a probability

of 0.02) or both with a probability of 0.0004.

6.5.4 Evaluation of the “Drill-down” Process With Respect To Spe-
cific Areas

Figures 6.26 and 6.27 show the outcome of the application of the “drill-down” process

to location areas {127, 128, 147 and 148} for the prediction maps for January and

February 2005 for Type 1 combination patterns. Notice that, originally there were four

location areas (nodes) in the island that now are divided into 16 sub-areas. The number

of cattle movements per area was therefore reduced and it is thus possible to identify

which sub-areas the movements actually took place in. From the figures it is interesting

to note (at least in this example) that the majority of cattle movements happened over

distances of more than 25km but less than 50km. There are also movements within

the 25km square areas. As mentioned in Sub-section 6.4, each node is divided in four

sub nodes, for example {127(SW ), 127(SE), 127(NE), 127(NW )} which is labeled as

{1271, 1272, 1273, 1274} in the associated probability map.

Also, in both Figures 6.26 and 6.27 there were a number of two or more step

percolations. For example, in Figure 6.26 an event (such as an outbreak of some cattle

disease) occurring at location area 1482 could be transmitted to location area 1483 with

a probability of 0.01, and to location area 1274 with a probability of 0.0001. In a three

step percolation, in Figure 6.27, an event in location area 1272 could be transmitted to

location area 1274 with a probability of 0.02, then to location 1283 with a probability

of 0.0002 and to location 1284 with a probability of 0.000004.
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Figure 6.19: Location areas of January-February 2003 Type 1 Combination Patterns
of Cattle Movement

6.6 Summary

This chapter has described the theory and operation of the Predictive Modeling mod-

ules that form the second part of the overall PTMF. The reported evaluation of the

modules was conducted using the CTS database. The support values associated with

particular kinds of frequent patterns was used to identify the probability of informa-
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Figure 6.20: January 2004 Type 1 Combination Patterns Probability Map

tion from one node being transmitted to another node across a social network. The

particular patterns of interest were those that comprise both node and link attributes

(combination patterns). The CTS frequent patterns were generated using the Trend

Identification module described previously. The proposed predictive modeling com-

prised two modules, the Percolation Matrix module and the vissualisation module.

The first comprised two main processes: (i) filtering a specific type of combination pat-

tern and (ii) converting the patterns’ support values into probabilities and generating

n probability percolating matrices. The Visualisation module provides two types of

visualisation: (i) probability map visualisation and (ii) geographical map visualisation

using Google Earth. The Prediction Modeling also provides an option to drill down

into some selected parts of the probability map. The reported evaluation indicated how

the overall process may be used to allow users to analyse networks and predict how an

event or information may travel across a given networks. From the above, it should

be noted that the Prediction Modeling produces a global probability prediction of an
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Figure 6.21: January 2005 Type 1 Combination Patterns Probability Map

event occurring at some node X be transmitted to node Y. For many applications this

would be perfectly adequate, however for some application we might wish to ascertain

the probability of an event occurring at a specific X being transmitted to Y. We will

return to this issue in the next chapter, the concluding chapter of this thesis.
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Figure 6.22: January 2006 Type 1 Combination Patterns Probability Map
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Figure 6.23: January 2004 Type 2 Combination Patterns Probability Map
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Figure 6.24: January 2005 Type 2 Combination Patterns Probability Map

Figure 6.25: January 2006 Type 2 Combination Patterns Probability Map
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Figure 6.26: “Drill-down” version of January 2005 Type 1 Combination Patterns Prob-
ability Map
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Figure 6.27: “Drill-down” version of February 2005 Type 1 Combination Patterns
Probability Map
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Chapter 7

Conclusion

The theme of this thesis has been trend mining. The view taken is that trend mining

is a type of temporal data mining that provides insight into how information changes

over time in the context of some activities. The idea is that knowledge and analysis of

change will help organisations with respect to their strategic planning and operations

management. The work described in this thesis was directed at mechanisms to not only

identify change but also support the analysis and utilisation of change. To this end

a number of data mining based technologies were investigated and proposed. These

were combined into a single framework, called the Predictive Trend Mining Framework

(PTMF) designed to support “end-to-end” trend mining and analysis. More specifically

the thesis proposed a temporal frequent pattern mining algorithm to identify change

expressed as trends, trend clustering and visualisation techniques to support trend un-

derstanding and analysis and an event prediction mechanism to support more advanced

analysis. A summary of the proposed Predictive Trend Mining approaches, the main

findings with respect to the identified research issues and question, the research contri-

butions and possible future directions, are therefore presented in this chapter. Section

7.1 gives the summary of the proposed Predictive Trend Mining Framework and the

main findings. The contribution of the research work, in relation to the research ques-

tion and associated research issues identified in Chapter 1 are then presented in Section

7.2 and the research contributed reemphasised in Section 7.3. Finally some directions

for future research are suggested in Section 7.4.

7.1 Summary

The objective of the proposed Predictive Trend Mining Framework (PTMF) is to benefit

end users and stakeholders seeking to observe, analyse and possibly to take actions

according to changing events occurring within their network environment of operation.

The PTMF comprises two main parts: (i) Frequent Pattern Trend Analysis (FPTA) and

(ii) Prediction Modeling (PM). FPTA is the process of identifying temporal frequent

patterns and trends, and provides facilities to analyse these frequent pattern trends.
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The FPTA element of the PTMF comprises four modules that are designed to be

applied in order: (i) Trend Identification, (ii) Trend Grouping, (iii) Pattern Migration

Clustering and (iv) Pattern Migration Visualisation. The Trend Identification module

uses the TM-TFP algorithm to identify frequent patterns from a set of data episodes.

One of the fundamental ideas promoted by the work described is the idea that a pattern

trend can be defined in terms of a sequence of support values. This idea can then be

extended to cover the concept of a related sequence of pattern trends describing a set of

episodes. The analysis of the frequent pattern trends starts with the Trend Grouping

module that clusters similar types of trends, using a SOM, to allow users to focus

on trends of interest and “communities” of trend clusters. Further analysis directed at

changes in the frequent pattern trends is facilitated by the Pattern Migration Clustering

module. The interpretation of the pattern migration result is further facilitated by the

Visualisation module. The second part of PTMF, the prediction modeling is designed

to demonstrate how information or events may percolate across a (social) network.

The Prediction Modeling consists of two modules: (i) the Percolation Matrix module

and (ii) the Prediction Visualisation module. The first operates using the support

associated with patterns to produce a Prediction matrix indicating the likelihood of

how information may flow across a network form node to node. The second provides a

visualisation of this Percolation Matrix.

The proposed framework has been evaluated using a number of time stamped social

network datasets. The findings of the experimental analyses have shown that the

PTMF serves to provide solutions to the main research issues and questions which were

discussed in the Chapter 1. The evaluations, using different social network datasets,

has also served to demonstrate the flexibility, reusability, genericity and accuracy of

the PMTF.

7.2 Main Findings

As stated in Chapter 1, the key aim of the work described in this thesis is to establish

and investigate effective mechanisms to: (i) discover temporal frequent patterns and

trends in network data, and (ii) facilitate the analysis of these trends and patterns

to predict behaviour across networks. In this section the findings of the reported

experimental analyses are discussed in the context of the research issues central to this

thesis:

1. Frequent Patterns and Trends: The identification of frequent patterns and

trends using the TM-TFP algorithm allows users to discover hidden information

in social network data. The discretisation and normalisation mechanism provides

the conversion process for the raw data into the pre-processed (binary valued)

input datasets so as to provide a flexible and reusable format for the proposed
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Trend Identification module to overcome the different characteristics of the po-

tential input data. To support large temporal data, the concept of individual

episodes (time series) permits a collection of temporal patterns and trends to be

generated for analysis purposes. The granularity of time stamps and selection

of data feature (attributes) are subjective to the interest of the users, however

flexibility is provided to allow user to define the nature of the data episodes and

features. This also allows the mining and analysis process to focus and highlight

the time series results according to users’ interest.

2. Change Detection: With a sufficiently large number of discovered temporal

patterns and trends, temporal changes in the trends can be identified to support

further trend analysis. In the thesis this is conceived of in terms of “pattern mi-

grations”. The proposed mechanism whereby these migrations can be identified,

by comparing SOM maps, clearly provides for the desired detection of temporal

changes in the network data.

3. Interesting Trends: Interesting tends are defined as those that migrate in some

way. The further they migrate the more interesting they are deemed to be. The

proposed mechanism to support the identification of interesting migrations rep-

resents a much more sophisticated technique for defining interestingness than a

simple support thresholding technique. In addition, constraints can be applied to

filter data records depending on the nature of the user’s interest. When identi-

fying pattern migrations, a minimum distance threshold is used to determine the

interestingness or significance of the migration. This threshold can be adjusted

so that the user can identify the most significant migrations.

4. Interpretation of Patterns and Trends: The clustering facility, using a SOM,

provides a mechanism for supporting the analysis of trends by grouping similar

trends together. The trend grouping (clustering) allows users to identify types

of trends that exist in a set of network data episodes. In addition the migration

visualisation module illustrates how pattern migrations may occur in a way that

is readily accessible to end users.

5. Prediction: The proposed Percolation Matrix supports the idea of predicting

how events might “percolate” across a network. The Percolation Matrix is con-

structed using frequency counts. The conversion of the identified trend informa-

tion into probability values indicates the likelihood of events percolating (travel-

ling) between location patterns with respect to time. The mechanism also pro-

vides information concerning both direct and indirect “percolation paths”.

6. Visualization: The proposed Pattern Migration Visualisation module was used

to display the movement across pairs of pattern migration maps describing two
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subsequent data episodes. The visualisation benefits the users in that it allows

for better interpretation of the result of the trend cluster analysis. In the case of

the Prediction Modeling Visualisation module, the information in the percolation

matrices is displayed. Users are thus able to view the possible percolation paths.

The maps also indicate the probability of particular movements. In the case of

(say) infection spread, users can identify both the possible source and the final

destination of the infection so that preventative action can be taken and future

monitoring planed. The application of the Geographical map tool (supported

with Google Earth) allows the identified percolations to be illustrated against an

actual geographical “backdrop”.

Thus, given the above findings, the proposed mechanisms, incorporated into the

PTMF, can be said to addressed the principal research question which was: “What

are the most appropriate mechanism for identifying analyzing and displaying trends

in network data and how might those trends be usefully be employed for prediction

purposes?” Referring to Section 1.4 in Chapter 1, the PTMF has also been evaluated

to ensure that the framework is a quality and effective technique for trend mining and

analysis, and prediction modeling. With respect to the research issues identified in

Chapter 1:

• Genericity: The PTMF was designed to accommodate pre-processed binary

valued data as this was considered to be a very general format that would support

the processing of a variety of different kinds of social network data.

• Computational time and memory: For each experiments using the PTMF

reasonable run times were recorded. The memory resource used to process and

store the frequent pattern trends was also found not to be excessive.

• Flexibility and Reusability: Different types of social network data have been

used to evaluate the PTMF indicating that the PTMF is both a reusable and

flexible process.

• Scalability: The PTMF is able to process large dataset (such as the CTS dataset)

and small datasets (such as MAF Logistic Cargo dataset).

• Accuracy: Analysis of the identified patterns and trends produced during the

evaluations, with the support of domain experts, indicated that the correct pat-

terns were identified and displayed.

7.3 Research Contributions

With respect to Section 1.5, the main contributions of the research work considered in

this thesis can be summarized as follows:
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1. A mechanism for efficiently generating temporal spatial frequent patterns and

trends to identify patterns and trends within social networks.

2. A mechanism for clustering large numbers of trends, using a SOM technique, so

as to assist in the further analysis of the identified trends.

3. A trend cluster analysis mechanism to support the detection of temporal changes

in trends and frequent pattern migrations.

4. A visualization of pattern migrations (traffic) from one trend cluster to another

over a period of time, again to facilitate and support trend analysis.

5. A mechanism for prediction modeling that can be applied to network data us-

ing the discovered frequent pattern trends, which illustrates the probability with

which information (events) might travel across a social network.

7.4 Research Future Direction

A sound foundation to support trend mining and analysis has been established and

incorporated into the PTMF. Nevertheless, there are a number of areas which merit

further investigation so as to enhance the functionality and increase the overall quality

the framework. The work described in this thesis has raised a number of promising

directions to enhance the operation of the PTMF as follows:

• Frequent pattern trends that fall below the support threshold: The

TM-TFP algorithm prunes the patterns that occurred below a specified support

threshold. Thus, in certain time stamps, when the pattern happens to be infre-

quent, the patterns’ trends are assumed to have a “0” value as opposed to the

actual frequent count. This is because the counts are not stored in the P-trees. It

would be desirable for the TM-TFP algorithm to be able to retrieve or store the

actual frequency counts for any pattern that was frequent in the previous time

stamps. Of course this should be done in an efficient manner with a good use of

memory space.

• SOM grid configurations: There is currently no scientific method to determine

an optimum SOM grid configuration, The identification of mechanisms to identify

optimum SOM grid configurations would provide for more effective trend analysis

and prediction modelling. This would also be of interest to the wider research

community.

• Trend Grouping module computational time: The current computational

time required by the Trend Grouping algorithm is significant, especially as the

number of trends increases. The current system struggles to process large numbers
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of trends (in excess of 100,000). Better mechanisms and storage structures for the

storing and processing of trends are therefore desirable so that larger networks

and/or greater numbers of trends can be considered.

• Predicting link traffic between a pair of specific nodes: The current

global prediction can be further investigated to propose a prediction modeling

mechanism that can analyse how information or events travel from a specific

node X to other specific node Y.
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Appendix A

Probability Maps for CTS Type
1 Combination Patterns between
June and December 2003

Figure A.1: June 2003 Type 1 Combination Patterns Probability Map
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Figure A.2: July 2003 Type 1 Combination Patterns Probability Map

Figure A.3: August 2003 Type 1 Combination Patterns Probability Map
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Figure A.4: September 2003 Type 1 Combination Patterns Probability Map

Figure A.5: October 2003 Type 1 Combination Patterns Probability Map
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Figure A.6: November 2003 Type 1 Combination Patterns Probability Map

Figure A.7: December 2003 Type 1 Combination Patterns Probability Map
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Appendix B

Probability Maps for CTS Type
1 Combination Patterns between
February and December 2004

Figure B.1: February 2004 Type 1 Combination Patterns Probability Map
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Figure B.2: March 2004 Type 1 Combination Patterns Probability Map

Figure B.3: April 2004 Type 1 Combination Patterns Probability Map
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Figure B.4: May 2004 Type 1 Combination Patterns Probability Map

Figure B.5: June 2004 Type 1 Combination Patterns Probability Map
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Figure B.6: July 2004 Type 1 Combination Patterns Probability Map

Figure B.7: August 2004 Type 1 Combination Patterns Probability Map
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Figure B.8: September 2004 Type 1 Combination Patterns Probability Map

Figure B.9: October 2004 Type 1 Combination Patterns Probability Map
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Figure B.10: November 2004 Type 1 Combination Patterns Probability Map

Figure B.11: December 2004 Type 1 Combination Patterns Probability Map
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Appendix C

Probability Maps for CTS Type
1 Combination Patterns between
February and December 2005

Figure C.1: February 2005 Type 1 Combination Patterns Probability Map
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Figure C.2: March 2005 Type 1 Combination Patterns Probability Map

Figure C.3: April 2005 Type 1 Combination Patterns Probability Map
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Figure C.4: May 2005 Type 1 Combination Patterns Probability Map

Figure C.5: June 2005 Type 1 Combination Patterns Probability Map
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Figure C.6: July 2005 Type 1 Combination Patterns Probability Map

Figure C.7: August 2005 Type 1 Combination Patterns Probability Map
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Figure C.8: September 2005 Type 1 Combination Patterns Probability Map

Figure C.9: October 2005 Type 1 Combination Patterns Probability Map

171



Figure C.10: November 2005 Type 1 Combination Patterns Probability Map

Figure C.11: December 2005 Type 1 Combination Patterns Probability Map
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Appendix D

Probability Maps for CTS Type
1 Combination Patterns between
February and December 2006

Figure D.1: February 2006 Type 1 Combination Patterns Probability Map
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Figure D.2: March 2006 Type 1 Combination Patterns Probability Map

Figure D.3: April 2006 Type 1 Combination Patterns Probability Map
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Figure D.4: May 2006 Type 1 Combination Patterns Probability Map

Figure D.5: June 2006 Type 1 Combination Patterns Probability Map
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Figure D.6: July 2006 Type 1 Combination Patterns Probability Map

Figure D.7: August 2006 Type 1 Combination Patterns Probability Map
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Figure D.8: September 2006 Type 1 Combination Patterns Probability Map

Figure D.9: October 2006 Type 1 Combination Patterns Probability Map
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Figure D.10: November 2006 Type 1 Combination Patterns Probability Map

Figure D.11: December 2006 Type 1 Combination Patterns Probability Map
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Appendix E

Probability Maps for CTS Type
2 Combination Patterns between
June and December 2003

Figure E.1: June 2003 Type 2 Combination Patterns Probability Map
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Figure E.2: July 2003 Type 2 Combination Patterns Probability Map

Figure E.3: August 2003 Type 2 Combination Patterns Probability Map
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Figure E.4: September 2003 Type 2 Combination Patterns Probability Map

Figure E.5: October 2003 Type 2 Combination Patterns Probability Map
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Figure E.6: November 2003 Type 2 Combination Patterns Probability Map

Figure E.7: December 2003 Type 2 Combination Patterns Probability Map
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Appendix F

Probability Maps for CTS Type
2 Combination Patterns between
February and December 2004

Figure F.1: February 2004 Type 2 Combination Patterns Probability Map
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Figure F.2: March 2004 Type 2 Combination Patterns Probability Map

Figure F.3: April 2004 Type 2 Combination Patterns Probability Map
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Figure F.4: May 2004 Type 2 Combination Patterns Probability Map

Figure F.5: June 2004 Type 2 Combination Patterns Probability Map
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Figure F.6: July 2004 Type 2 Combination Patterns Probability Map

Figure F.7: August 2004 Type 2 Combination Patterns Probability Map
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Figure F.8: September 2004 Type 2 Combination Patterns Probability Map

Figure F.9: October 2004 Type 2 Combination Patterns Probability Map
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Figure F.10: November 2004 Type 2 Combination Patterns Probability Map

Figure F.11: December 2004 Type 2 Combination Patterns Probability Map
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Appendix G

Probability Maps for CTS Type
2 Combination Patterns between
February and December 2005

Figure G.1: February 2005 Type 2 Combination Patterns Probability Map
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Figure G.2: March 2005 Type 2 Combination Patterns Probability Map

Figure G.3: April 2005 Type 2 Combination Patterns Probability Map
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Figure G.4: May 2005 Type 2 Combination Patterns Probability Map

Figure G.5: June 2005 Type 2 Combination Patterns Probability Map
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Figure G.6: July 2005 Type 2 Combination Patterns Probability Map

Figure G.7: August 2005 Type 2 Combination Patterns Probability Map

192



Figure G.8: September 2005 Type 2 Combination Patterns Probability Map

Figure G.9: October 2005 Type 2 Combination Patterns Probability Map
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Figure G.10: November 2005 Type 2 Combination Patterns Probability Map

Figure G.11: December 2005 Type 2 Combination Patterns Probability Map
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Appendix H

Probability Maps for CTS Type
2 Combination Patterns between
February and December 2006

Figure H.1: February 2006 Type 2 Combination Patterns Probability Map
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Figure H.2: March 2006 Type 2 Combination Patterns Probability Map

Figure H.3: April 2006 Type 2 Combination Patterns Probability Map
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Figure H.4: May 2006 Type 2 Combination Patterns Probability Map

Figure H.5: June 2006 Type 2 Combination Patterns Probability Map
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Figure H.6: July 2006 Type 2 Combination Patterns Probability Map

Figure H.7: August 2006 Type 2 Combination Patterns Probability Map
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Figure H.8: September 2006 Type 2 Combination Patterns Probability Map

Figure H.9: October 2006 Type 2 Combination Patterns Probability Map
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Figure H.10: November 2006 Type 2 Combination Patterns Probability Map

Figure H.11: December 2006 Type 2 Combination Patterns Probability Map
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